LSTM Recurrent Neural Network (RNN) | Explained in Detail

Поділитися
Вставка
  • Опубліковано 15 січ 2025

КОМЕНТАРІ • 98

  • @dmg-s
    @dmg-s 2 роки тому +10

    I am so happy now. Thanks!

  • @hafolahbi
    @hafolahbi Місяць тому +4

    I can't pass without commenting and liking this video. It is invaluable, far more than reading it in journals

    • @MachineLearningWithJay
      @MachineLearningWithJay  Місяць тому +2

      Wow.. thank so much for such an amazing comment! Means a lot to me. Glad I could help. I wish you all the very best for your exams!

  • @ivana_ftn
    @ivana_ftn Рік тому +33

    You are better than my professor, thank you

  • @srishti6637
    @srishti6637 Рік тому +7

    best explanation with no faltu pnchyti and made the topic crystal clear

  • @eng.mohamedemam6489
    @eng.mohamedemam6489 Рік тому +4

    from a man from Egypt send big thanks to you ❤❤

  • @ikraamhanif7966
    @ikraamhanif7966 6 місяців тому +2

    Kash mene phly prh liya hota aj paper hai aur apki videos dekh kr itna achay sy smjh arha hai kiya hi bolun apko...Thank u so much for providing us knowledge like this

  • @Ayoub.Naderei
    @Ayoub.Naderei 4 місяці тому +2

    I think u deserve much more than 27k subscribers man. I totally got it after watching this playlist

    • @MachineLearningWithJay
      @MachineLearningWithJay  3 місяці тому

      Hehe! Thank you so much! I appreciate it, and I agree. Hopefully with more videos and your support, the channel might grow.

  • @jayhu6075
    @jayhu6075 Рік тому +9

    I am very glad to find your channel. You make this topic for a beginner as me so understandable.
    Hopefully a following to write this in a python code. Many thanks.

  • @rajkamal1705
    @rajkamal1705 Рік тому +3

    Very easy to understand. You are better than many prof. Thanks bro.

  • @nikhils2155
    @nikhils2155 4 місяці тому +5

    Thank you for these awesome classes brother

  • @christianfaust5141
    @christianfaust5141 3 місяці тому +1

    Thank you from Germany, I appreciate your work

  • @deepurachakonda28
    @deepurachakonda28 2 роки тому +4

    u made my day..thnx lot

  • @dinushachathuranga7657
    @dinushachathuranga7657 2 місяці тому +1

    Thanks for the clear explanation ❤❤

  • @MurodilDosmatov
    @MurodilDosmatov 6 місяців тому +1

    Thousand of thanks for your effort to make this video tutorial

  • @arvinflores5316
    @arvinflores5316 2 роки тому +2

    That was a good binge man. Hopefully attention/transformers will be covered too!

  • @pavangoyal6840
    @pavangoyal6840 Рік тому +2

    Excellent. Thank for this video and explaining complex concept like LSTM in very short and crisp video

  • @Thing1Thing11
    @Thing1Thing11 Рік тому +2

    Thank you so much! I was so lost and you really helped me get to grips with what is going on

  • @tridibeshmisra9426
    @tridibeshmisra9426 Рік тому +2

    Best explanation...... It helped me for endsem exam...thank u sir.....keep creating ... let's get riding🙂🙂

  • @s8x.
    @s8x. 8 місяців тому +2

    brother u made learning machine learning so easy. When i got money i will be sure to show my thanks

    • @MachineLearningWithJay
      @MachineLearningWithJay  2 місяці тому

      @@s8x. haha… you appreciating this is enough for me me! Goad I could help!

  • @muhammadumarwaseem
    @muhammadumarwaseem 10 місяців тому

    Thank you for the detailed to the point explanation.

  • @rezamohammadi1140
    @rezamohammadi1140 Рік тому +1

    Very helpful because of mathematical explanation and summery in the last

  • @khushiyadav-st4oh
    @khushiyadav-st4oh 2 місяці тому +1

    Best Explanation Ever

  • @Bunches_of_Entertaiment
    @Bunches_of_Entertaiment Рік тому +2

    Superb explanation brother.. thank you so much 😍.. I got very clear understand on LSTM and as well as RNN

  • @saatvikkool
    @saatvikkool 2 роки тому +2

    You're doing a great job bro ✌️❤️

  • @KulkarniPrashant
    @KulkarniPrashant 8 місяців тому

    Clear and concise explanation, thank you!

  • @kavoshgar9733
    @kavoshgar9733 10 місяців тому

    You describe everything very well✌️

  • @sandeepkomalpothu44
    @sandeepkomalpothu44 2 роки тому +2

    thanks man …. very helpful … cheers !!!

    • @MachineLearningWithJay
      @MachineLearningWithJay  2 роки тому +1

      Cheers!!

    • @sandeepkomalpothu44
      @sandeepkomalpothu44 2 роки тому

      @@MachineLearningWithJay could you please make videos on GRUs ,se2seq,Attention models, Transformers?

    • @MachineLearningWithJay
      @MachineLearningWithJay  2 роки тому +1

      @@sandeepkomalpothu44 I am goong to upload those videos, but it will take some time. Right now, i am busy with my exams, so will upload when i get time. 😇

  • @vinayakmane7569
    @vinayakmane7569 Рік тому +4

    remarkable explanation , keep bringing good content. just one little suggestion , try to write keypoints on board while explaining so that we can copy and it will help us while revising

    • @MachineLearningWithJay
      @MachineLearningWithJay  2 місяці тому

      @@vinayakmane7569 Write may be I will try to keep the summary at the end and write key points there? Would it help? Anyways I will keep this in mind for my future videos

  • @INCREDIBLE9463
    @INCREDIBLE9463 6 місяців тому

    Very good explanation

  • @harshitraj8409
    @harshitraj8409 2 роки тому +2

    Great Explanation

  • @evildead3734
    @evildead3734 2 роки тому +1

    Great resources 🙌

  • @QuratRaja-q2v
    @QuratRaja-q2v Рік тому

    Worthy explanation!

  • @PRAJAKTAPATKAR-t7z
    @PRAJAKTAPATKAR-t7z 10 місяців тому

    Amazing- great work

  • @hamedhasani5774
    @hamedhasani5774 2 місяці тому

    awesome work

  • @7aanusha885
    @7aanusha885 Рік тому

    thank you for this video

  • @this_is_the_baat
    @this_is_the_baat 6 місяців тому

    thanks my dear bro

  • @user_userovich
    @user_userovich Рік тому

    Thank you very much!

  • @madhusushma968
    @madhusushma968 2 дні тому +1

    sir plz dont use black background and red pen its realy hard to see try another combination or increase the thickness of the pen
    and your explanation as always 20/10 (good job)

  • @Animelover-oo7cz
    @Animelover-oo7cz 8 місяців тому

    you are the best thank youu

  • @juditmaymo9714
    @juditmaymo9714 Рік тому +2

    love this video!!

  • @ABCD-wd1sk
    @ABCD-wd1sk Місяць тому +1

    Thanks

  • @KishorA-s8f
    @KishorA-s8f Рік тому

    Thank you

  • @rohitpol1109
    @rohitpol1109 8 місяців тому +1

    What is Bc, Bf, Bi, Bo added everywhere ?? Is that bias ?

    • @forsakennawfal546
      @forsakennawfal546 6 місяців тому

      Biases or as we can say the Constants added in every function, indicating the margin of error.

  • @VenomOmpi
    @VenomOmpi 8 місяців тому

    thanks a lot!

  • @slingshot7602
    @slingshot7602 10 місяців тому

    Tnx a lot

  • @shaveta01
    @shaveta01 9 місяців тому

    Good vdo
    Pl use white marker 😊instead of red

  • @pavangoyal6840
    @pavangoyal6840 Рік тому

    For time series data (there are around 60 input variables) and there are two outputs variables. Which deep learning model would be best LSTM ? Here accuracy matters. For learning time does not matter. For 2 output variables how to design LSTM model ?

  • @achreflegend4335
    @achreflegend4335 5 місяців тому

    5:00 the green formula ; shouldn't it be a sum of multiplication through 0~t instead of just a sum

  • @vishnusit1
    @vishnusit1 Рік тому

    At 8:45 you are wrong about matrix multiplication

  • @tanvirtanvir6435
    @tanvirtanvir6435 Рік тому

    3:22 problem with RNN

  • @tahsinulkarim
    @tahsinulkarim Рік тому

    ❤❤❤

  • @charanm1773
    @charanm1773 Рік тому

    Arigatto

  • @KhadijaTulKubra-o2o
    @KhadijaTulKubra-o2o 11 місяців тому

    Hi! i want to learn text detection from images using RNN. Please if you can help ???

  • @mainakmukherjee3444
    @mainakmukherjee3444 Рік тому

    Hello bhaiya, thanks for the informative contents. But can you please explain me why you are saying ft (forget gate) is a matrix. From the formula, it just an output of a sigmoid function, which I think a scalar value for each time step. Please explain this part. 🙏🙏

  • @martinant44
    @martinant44 8 місяців тому

    te quiero mucho

  • @beshosamir8978
    @beshosamir8978 2 роки тому +1

    Hi , i hope one day you explain transformers because ur explainations is great ,but i really need your help about something because i really got tired of searching about the answer
    i got stucked on something and seems like no one helps so i hope you help me , now i studied about LSTM and Bi-LSTM and i understood them well , but i read some blogs said that bi directional LSTM good for sentiment analysis and time series so i really got confused about it , How it could be useful !!!! it will be useful if my current prediction depends on what happens in the future ,so how it could be usefull in sentiment analysis if i already will predict my final output in the last word so there is no future because i stand in the last , i know it could be usefull in some applications like name entity recognation because the type of the output is (many) so maybe my current output depends on what is happend in the future
    i really hope to help me because i didn't find any reason after 2 hours of searching in google

    • @MachineLearningWithJay
      @MachineLearningWithJay  2 роки тому +1

      Hi, bidirectional LSTM looks at all the words appearing in an input sentence, from both directions, front to back and back to front. So, you can always assume that bidirectional LSTM can be useful for any application involving sentences as input. I don’t have any more reason for this, for now.

    • @beshosamir8978
      @beshosamir8978 2 роки тому

      @@MachineLearningWithJay
      So , is my question make sense ? or there's something i can not understood about the intuation for now ?

  • @slingshot7602
    @slingshot7602 10 місяців тому

    GRU???

  • @aitoquantum
    @aitoquantum Рік тому

    the summation formula is wrong! one product sum should be there along with plain summation, that will unfold the longer terms...

  • @MrKhanRizwan
    @MrKhanRizwan 4 місяці тому +1

    Too complex must be targeted for mathematicians

    • @MachineLearningWithJay
      @MachineLearningWithJay  3 місяці тому

      Hi, yeah… the details LSTM is a bit complicated. It doesn’t make much sense at first, and you need mathematical background to understand this.
      If you are not concerned with the implementation details, then you can directly use LSTM through frameworks like PyTorch, Keras

  • @shantanusingh2198
    @shantanusingh2198 5 місяців тому +1

    Proably the worst video on lstm i have seen

    • @MachineLearningWithJay
      @MachineLearningWithJay  5 місяців тому

      Amm.... sure... All videos are different kind... sad to see this tutorial wasn't help to you :(

  • @iftikharullah3616
    @iftikharullah3616 Рік тому

    I watched many videos for this topic but couldn't understand it. You made every point clear in a beautiful way 🫡