Update: I have published the new version of the article on ResearchGate, so I’ll start the new series of videos soon. I can’t be sure, when exactly, but you may help me doing this sooner, as now I’m struggling a hard financial situation, since Masaryk University cancelled the scholarship for Ukrainian students. In the meantime I shall be also working on the attack on P=NP problem as my theorem gives a key to this problem as well. I strongly hope for your support. Let us do beautiful things together! And remember: the best is yet to come!
0:00 - Introduction 0:51 - The connection of integrals to the differential equations 4:34 - Building the $\lambda$ functional to solve the homogeneous Cauchy problem 9:19 - The solution of one specific integrodifferential equation using the constructed functional and reducing all of wanted differential equations to it. 23:40 - The approximation of the floor function by entire functions and the lemma about approximation in Riemann-Stieltjes integral 29:04 - Obtaining the theorem about summation analytically generated series and representation of Riemann zeta-function 40:16 - Proof of the Riemann hypothesis by studying the obtained system of equations. 58:50 - Outro and acknowledgments
I have a question, I'm only a student, but at the top of page 4 of your paper, when you exponentiate both sides, you seem to forget a negative sign. How is this justified? ln(1-F(a))=-ln(b/a) ln(1-F(a))=ln(a/b) Should yield 1-F(a)=a/b F(a)=1-a/b
honestly, i dont know anything about mathematics, but i find it hard to think that you proved the riemman hypothesis in only 13 pages. do you really believe you proved it?
Well, I assume that I can be wrong indeed. But this is just an extract from many years of work and tones of the paper. Olympiad math taught me that the hardest problems could have got a nice and elegant solution. That is why I present this. In case if I am wrong I would just continue working, but I need to know if I am wrong and where I am wrong) As I consider maths to be my art and I define myself through my art, I can only hope that I have managed to perform something beautiful)
@@artificialresearching4437 I wanted to do it myself, but I wanted to give myself 10 years. It seems that times overtook my endeavors🙃. I'm not really ready yet to evaluate your work for the moment and I'm a slow learner.
Update: I have published the new version of the article on ResearchGate, so I’ll start the new series of videos soon. I can’t be sure, when exactly, but you may help me doing this sooner, as now I’m struggling a hard financial situation, since Masaryk University cancelled the scholarship for Ukrainian students. In the meantime I shall be also working on the attack on P=NP problem as my theorem gives a key to this problem as well. I strongly hope for your support. Let us do beautiful things together! And remember: the best is yet to come!
Wow, fantastic work! I watched your video to see if I could find any issues, and I was unable to find anything. Good job, and Good luck!
Thank you, sir, I am most pleased to receive these words from you!
Hope, I could please you with something beautiful!
As I am the Ukrainian in a quite desperate financial situation, I would like to ask you for supporting my channel, if you could… But thank you anyway!
0:00 - Introduction
0:51 - The connection of integrals to the differential equations
4:34 - Building the $\lambda$ functional to solve the homogeneous Cauchy problem
9:19 - The solution of one specific integrodifferential equation using the constructed functional and reducing all of wanted differential equations to it.
23:40 - The approximation of the floor function by entire functions and the lemma about approximation in Riemann-Stieltjes integral
29:04 - Obtaining the theorem about summation analytically generated series and representation of Riemann zeta-function
40:16 - Proof of the Riemann hypothesis by studying the obtained system of equations.
58:50 - Outro and acknowledgments
Update: I have found an issue with the matrix L 48:21 . It was just a miscalculation, I’m sorry. I have corrected that in the paper. Have a nice day!
Amazing work !!!
Thank you!!!
Update: today I have submitted this paper to Annals of Mathematics! Wish me luck!)
¡Good luck!
Thank you, man!)
Good luck!!
good luck buddy!
Good luck! I didn't realize this was so recent and great tshirt!
A little remark: just before the Riemann-Stieltjes integral there should have been a term f(1), since we were counting from the second term
And for the Riemann zeta-function f(1) = 1
Also at 50:58 z ln b = \plusminus z_m ln b + 2\pi k
I have a question, I'm only a student, but at the top of page 4 of your paper, when you exponentiate both sides, you seem to forget a negative sign. How is this justified?
ln(1-F(a))=-ln(b/a)
ln(1-F(a))=ln(a/b)
Should yield
1-F(a)=a/b
F(a)=1-a/b
@@lih3391 Thank you, I shall check it out!
@@lih3391 Anyway I am still working on it and I appreciate your help!
honestly, i dont know anything about mathematics, but i find it hard to think that you proved the riemman hypothesis in only 13 pages. do you really believe you proved it?
Well, I assume that I can be wrong indeed. But this is just an extract from many years of work and tones of the paper. Olympiad math taught me that the hardest problems could have got a nice and elegant solution. That is why I present this. In case if I am wrong I would just continue working, but I need to know if I am wrong and where I am wrong) As I consider maths to be my art and I define myself through my art, I can only hope that I have managed to perform something beautiful)
@@artificialresearching4437 nice. i hope you manage to prove it, then. at least i will be able to say that i talked to a fields medalist😂
Thank you, I am most pleased 😂
Cliffs Notes, please.
How it's going man?
You may see the paper and the next video)
Are you going for the CMI price? I suppose everyone knows about Millennium Problems of Clay Mathematics Institute?
Well, when I finish the proof completely and format it correctly, get it peer reviewed etc., of course I shall do that)
@@artificialresearching4437 I wanted to do it myself, but I wanted to give myself 10 years. It seems that times overtook my endeavors🙃. I'm not really ready yet to evaluate your work for the moment and I'm a slow learner.
@@Learning-x1u Well, I’m not sure that I am absolutely correct in my paper, but I hope that my thoughts would be at least a little useful in this^^