Can You Solve This Shaded Area? | Mystery of 2 Overlapping Squares

Поділитися
Вставка
  • Опубліковано 14 гру 2024

КОМЕНТАРІ • 21

  • @jimlocke9320
    @jimlocke9320 Місяць тому +2

    Note that FCBQ is a trapezoid (also called a trapezium) and we can solve for its area. At 6:55, we have enough information to determine the lengths of both bases FC and QB as well as height CB. CB = CD = AB = AD = AP + PD = √5 + 1/(√5) = (6√5)/5. FC = CD - FD = (6√5)/5 - 2/(√5) = (4√5)/5. AQ = AP = √5 by corresponding sides of congruent triangles, so AQ = √5. QB = AB - AQ = (6√5)/5 - √5 = (√5)/5. Area of FCBQ = (1/2)(FC + QB)(CB) = (1/2)((4√5)/5 + (√5)/5)((6√5)/5) = (1/2)(√5)((6√5)/5) = 3, as The Phantom of the Math also found.

    • @ThePhantomoftheMath
      @ThePhantomoftheMath  Місяць тому +1

      Yes, absolutely! FCBQ is a trapezoid, so you can do it that way also. Great job btw! 👍

  • @drJavi
    @drJavi Місяць тому

    This one was fun to solve. Thanks for sharing.

  • @ubncgexam
    @ubncgexam Місяць тому

    1st 😂
    👍🏼 Good problem - nice solution. 😉

  • @ZackJENKINS-yp3db
    @ZackJENKINS-yp3db Місяць тому +1

    You're like a teacher 😜

    • @ThePhantomoftheMath
      @ThePhantomoftheMath  Місяць тому +1

      @@ZackJENKINS-yp3db I guess I'll take that as a compliment... 😂😂😂

  • @babisstafulas7874
    @babisstafulas7874 Місяць тому

    1) If we make the height of trapezoid we have 4 similar right triagles 2) From the left one of them, we khow area ( 1 ) and one side (2) and we can find the other sides (type of area and PY.TH.)
    3) With the theorems of similar triagles we can find the bases of trapezoid ( 4*sq(5)/5 and sq(5)/5 and the height 6*sq(5) and the area 3) It's easy. Thank's From Greece "No good English".

    • @ThePhantomoftheMath
      @ThePhantomoftheMath  Місяць тому

      Very nice! I will add translation in Greek for next video. I promise!

  • @gelbkehlchen
    @gelbkehlchen Місяць тому

    Lösung:
    A = linke untere Ecke des kleinen Quadrates,
    B = rechte untere Ecke des kleinen Quadrates,
    C = rechte obere Ecke des kleinen Quadrates,
    D = linke obere Ecke des kleinen Quadrates,
    E = rechte untere Ecke des großen Quadrates,
    F = rechte obere Ecke des großen Quadrates,
    G = linke obere Ecke des großen Quadrates,
    H = Schnittpunkt beider Quadrate,
    I = unterer Schnittpunkt der Verlängerung von BC mit dem großen Quadrat.
    Das ganze schwarze, kleine Quadrat hat die Fläche 3+1 = 4, also ist die Kante vom schwarzen, kleinen Quadrat a = 2. Die linke Dreiecksfläche hat die Fläche 1, daraus folgt:
    a*DH/2 = 2*DH/2 = 1 ⟹
    DH = 1 ⟹ HC = 2-DH = 2-1 = 1
    Pythagoras:
    AH = √(AD²+DH²) = √(2²+1²) = √5
    Ähnlichkeit: HG/HC = DH/AH ⟹ HG/1 = 1/√5 ⟹ HG = 1/√5 ⟹
    AG = AH+HG = √5+1/√5 = (5+1)/√5 = 6/√5 ⟹
    Fläche des großen Quadrates = AG² = (6/√5)² = 36/5 = 7,2
    Ähnlichkeit: GC/HC = AD/AH ⟹ GC/1 = 2/√5 ⟹ GC = 2/√5 ⟹
    Ähnlichkeit: AI/AB = AH/AD ⟹ AI/2 = √5/2 ⟹ AI = √5 ⟹
    Fläche des schwarzen Trapezes = (GC+AI)/2*AG = (2/√5+√5)/2*6/√5
    = (2+5)/√5*3/√5 = 7*3/5 = 21/5 = 4,2
    Rote Fläche = Fläche des großen Quadrates - Fläche des schwarzen Trapezes
    = 7,2-4,2 = 3

  • @marioalb9726
    @marioalb9726 Місяць тому +1

    s² = (1+3) = 4 cm² --> s= 2cm
    A₁=A₃= ½.s.h₁ = 1cm² --> h₁ = 1 cm
    tan α = h₁/s = 1/2 --> α = 26,565°
    β = 45° - α = 18,435°
    S² = (d cosβ)² = (2√2 cosβ)² = 7,2 cm²
    A₄ = ½ s/2 .cosα. s/2 .sinα = 0,2cm²
    A = S² - s² - A₄ = 7,2 - 4 - 0,2
    A = 3 cm² ( Solved √)

  • @santiagoarosam430
    @santiagoarosam430 Місяць тому

    AGFE se puede dividir en cuatro triángulos rectángulos congruentes de superficie unitaria y lados 1/2/√5→ QEA es también congruente con esos triángulos y PDF es semejante a ellos→ Razón de semejanza s=1/√5→ s²=1/5→ Área de PDF =1*1/5=1/5 → PD=GP*s=1*1/√5 =√5/5→ AD=AP+PD =6√5/5 ---> Área sombreada BCFQ =ABCD-AQFD =(6√5/5)² -(1/5)-3-1=15/5 =3 ud².
    Buen rompecabezas. Gracias y un saludo cordial.

  • @Eewec
    @Eewec Місяць тому

    CB = 1/(√5) + (√5) = (√5)/5 + (5√5)/5 = (6√5)/5,
    QB is 1/√5,
    FC = CB - 2√5 = (6√5)/5 - 2/√5 = (6√5)/5 - (2√5)/5 = (4√5)/5
    Red area = (CB x (FC + QB) )/2
    =(6√5)/5 x ((4√5)/5 + 1/√5) /2
    =(3√5)/5 x ((4√5)/5 + √5/5)
    =(3√5)/5 x (5√5)/5 = 15 * 5 / 25 = 75 / 25 = 3

  • @devondevon4366
    @devondevon4366 Місяць тому

    3

  • @babisstafulas7874
    @babisstafulas7874 Місяць тому

    The right 6*sq(5)/5 for height. I am sorry.

  • @marioalb9726
    @marioalb9726 Місяць тому +1

    s = √(1+3) = 2 cm
    A₁ = ½.s.h₁ = 1 cm² --> h₁ = 1 cm
    tan α = 1/2. --> α = 26,565°
    β = 45° - α = 18,435°
    S = d cosβ = 2√2 cosβ = 2,6834 cm
    A₃ = A₁ = 1cm²
    A₄ = ½ s/2 .cosα. s/2 .sinα = 0,2cm²
    A = S² - A₂ - A₃ - A₄ = 7,2 - 3 - 1 - 0,2
    A = 3 cm² ( Solved √)