An Exponent That Triples | Problem 380

Поділитися
Вставка
  • Опубліковано 5 лис 2024

КОМЕНТАРІ • 11

  • @mcwulf25
    @mcwulf25 Місяць тому +6

    If n=1 you have 5pi at the bottom.

  • @scottleung9587
    @scottleung9587 Місяць тому

    Cool!

  • @trojanleo123
    @trojanleo123 Місяць тому

    z = (4m+1)/(4k+1) - i[2.ln3/π(4k+1)]
    For principle values m=k=0
    z = 1 - i*2ln3/π

  • @dorkmania
    @dorkmania Місяць тому

    Dividing i^(4m + z) = 3•i^(4n + 1) by i^(4n + 1)
    i^(4m + z - 4n - 1) = 3
    => i^(4(m - n) + z - 1) = 3
    Or i^(4k+ z - 1) = 3, where k = m - n

  • @nitzan33
    @nitzan33 Місяць тому

    Maybe do an exponent that multiplies? Like, can you do: W^Z =nW? or at least i^Z = ni? I am a fan of general cases, you see?

    • @aplusbi
      @aplusbi  Місяць тому +1

      Great idea! 😍

  • @viniaz2997
    @viniaz2997 Місяць тому

    Did you do i to the power of z equals negative i? e to the power of z equals negative e?

    • @aplusbi
      @aplusbi  Місяць тому

      sounds like great ideas!

    • @trojanleo123
      @trojanleo123 Місяць тому

      Ooooh. That should be fun!!!

  • @mcwulf25
    @mcwulf25 Місяць тому

    Why wouldn't you need n? Isn’t it integral to the substitution for i?

    • @aplusbi
      @aplusbi  Місяць тому

      I think because z is a variable and having multiple values for 3i on the right hand side provides all the possible solutions. I have a feeling only certain n values will work. There is always an exponent z that makes this equation possible without considering the multiple representations of i at the base. Using n breaks that association. This is my guess btw