A friendly introduction to deep reinforcement learning, Q-networks and policy gradients

Поділитися
Вставка
  • Опубліковано 2 лют 2025

КОМЕНТАРІ • 169

  • @MeetYourBook
    @MeetYourBook Рік тому +24

    Hands down, this explanation of reinforcement learning is like winning a dance-off against a robot-smooth, on point, and utterly unbeatable!

  • @-xx-7674
    @-xx-7674 8 місяців тому +2

    This is probably the most friendliest video and still covering all important concepts of RL, thank you

  • @maxave7448
    @maxave7448 5 місяців тому +5

    Absolutely awesome explanation! Ive been struggling to learn this concept because other tutorials were focusing on the wrong aspects of Q-Learning and didnt get the message accross. Yours, on the other hand, did an excellent job by starting with the interpretation of the Bellman Equation and giving an intuitive visual explanation! Wonderful tutorial

  • @jjhj_
    @jjhj_ 2 роки тому +12

    I've been bingewatching your "friendly intro to" series since yesterday and it has been amazing. I've worked with ML models as part of my studies and my work over the past two years, but even so, you've enriched my conceptual understanding by so much more than any of my professors could. Really appreciate your clever visualizations of what's going on "under the hood" of the ML/DL algo's. Great videos, awesome teacher!

  • @reyhanehhashempour8522
    @reyhanehhashempour8522 3 роки тому +15

    Fantastic as always! Whenever I want to learn a new concept in AI, I always start with Luis's video(s) on that. Thank you so much, Luis!

  • @avneeshkhanna
    @avneeshkhanna 3 дні тому

    This was an amazing introduction to the topic! Although there still some things I could not understand, but the way you explained everything using simple examples and terms made a big difference. Thanks!

  • @achyuthvishwamithra
    @achyuthvishwamithra 3 роки тому +5

    I feel super fortunate to have come across your channel. You are doing an incredible job! Just incredible!

  • @srinivasanbalan5903
    @srinivasanbalan5903 3 роки тому +2

    One of the best videos on RL algorithms. Kudos to Dr. Serrano.

  • @ShusmitaDasGupta
    @ShusmitaDasGupta 6 місяців тому +1

    Your teaching styles and process is so good. I didn't get distracted to the whole video. Thank you sir. For teaching such valuable things in such a way.

  • @riddhimanmoulick3407
    @riddhimanmoulick3407 Рік тому +2

    Thanks for such a great video! Your visual descriptions combined with your explanations really presented a wonderful conceptual understanding of Deep-RL fundamentals.

  • @renjithbaby
    @renjithbaby 3 роки тому +3

    This is the simplest explanation I have seen on RL! 😍

  • @nishanthplays195
    @nishanthplays195 2 роки тому +3

    No words sir! Finally found another great yt channel ✨

  • @manav9686
    @manav9686 7 місяців тому +1

    Just subscribed to this channel after watching this video. Wonderful explanations combined with excellent visuals. Had difficulty in understanding RL, your video made me understand it better. Thank you.

  • @pandharpurkar_
    @pandharpurkar_ 3 роки тому +8

    Luis is master man of explaining complex things easily..!! thank you luis for such a great efforts

  • @therockomanz
    @therockomanz 2 роки тому

    I'd like to thank the creators for this video. This is the best video to learn the basics of RL. Helped a lot in my learning path.

  • @BritskNguyen
    @BritskNguyen 5 місяців тому

    This is a perfect introduction. It goes from the specific then the general.

  • @lebohangmbele283
    @lebohangmbele283 3 роки тому

    Wow. I can show this to my pre-school nephew and at the end of the video they will understand what RL is all about. Thanks.

  • @pauledam2174
    @pauledam2174 5 місяців тому

    Wonderful explanation. I think it by far the best I have seen!

  • @geletamekonnen2323
    @geletamekonnen2323 3 роки тому +1

    I Can't pass Without appreciating this great great Lecture. Thanks Luis serrano. 😍

  • @alsahlawi19
    @alsahlawi19 Рік тому

    This by far the best video explaining DRL, many thanks!

  • @debobabai
    @debobabai 2 роки тому

    Excellent explanation. I dont know why this video has so low views. It deserves Billion views.

  • @wfth1696
    @wfth1696 2 роки тому

    One of the clearest explanations of the topic that I saw. Excellent!

  • @randomdotint4285
    @randomdotint4285 3 роки тому

    Oh my god. This was god level teaching. How I envy your real world students.

  • @piyaamarapalamure5927
    @piyaamarapalamure5927 Рік тому

    This is the best tutorial so far for the Q learning .. Thank you so much 😍😍

  • @EshwarNorthEast
    @EshwarNorthEast 3 роки тому +7

    The wait ends! Thank you sir!

  • @jeromeeusebius
    @jeromeeusebius 3 роки тому +2

    Luis, great video. Thanks for putting this together explaining the most important concepts and terms in Reinforcement Learning.

  • @beltusnkwawir2908
    @beltusnkwawir2908 2 роки тому

    I love the analogy of the discount factor with the dollar depreciation

  • @yo-sato
    @yo-sato 2 роки тому

    EXcellent tutorial. I have recommended this tutorial to my students.

  • @code_with_om
    @code_with_om 2 роки тому

    After a day of searching I found a great explanation 😀😀 thank you so much

  • @shreyashnadage3459
    @shreyashnadage3459 3 роки тому +1

    Finally here it is....been waiting for this for ages! Thanks Luis! Regards from India

  • @mariogalindoq
    @mariogalindoq 3 роки тому +2

    Luis: congratulations! Again a very good video, very well explained and with a beautiful presentation. Thank you.

  • @william_8844
    @william_8844 Рік тому

    WTF!!!
    Like I am half way through and I am already blown by the way you explain content. This has been the best video so far explaining RF..... Wow. New sub❤❤😅

  • @LuisGonzalez-jx2qy
    @LuisGonzalez-jx2qy 3 роки тому +3

    Amazing work fellow Luis! Looking forward to more of your videos

  • @charanbirdi
    @charanbirdi Рік тому

    Absolutely brilliant, specially Nural network and loss function explanation

  • @miguelramos3424
    @miguelramos3424 2 роки тому

    it's the best video that I've seen about this topic, thanks.

  • @colabpro2615
    @colabpro2615 3 роки тому +2

    you're one of the best teachers I have ever come across!

  • @NoNTr1v1aL
    @NoNTr1v1aL 3 роки тому +1

    Absolutely amazing video! You are my saviour!

  • @karlbooklover
    @karlbooklover 2 роки тому

    best explanation I've seen so far

  • @Andy-rq6rq
    @Andy-rq6rq 2 роки тому

    Amazing explanation! I was left confused after the MIT RL lecture but it finally made sense after watching this

  • @overgeared
    @overgeared 3 роки тому

    excellente como siempre! thank you from an MSc AI student working on DQNs.

  • @pellythirteen5654
    @pellythirteen5654 3 роки тому +9

    Fantastic ! Having watched many teachings on this subject , your explanation really made things clear.
    Now my fingers are itching to try it out and write some Delphi code. I will start with your grid-world first , but if that works I want to write a chess-engine. I have already written a chess-program using the alfa-beta algoritme and it will be fun to compare it with a neural-network based.

  • @pedramhashemi5019
    @pedramhashemi5019 8 місяців тому

    A great introduction! thank you sincerely for this great gem!

  • @mutemoonshiner
    @mutemoonshiner 2 роки тому

    Huge thanks , for a nice and lucid content.
    specially for how to train the network, loss function and how to create datasets.

  • @alexvass
    @alexvass Рік тому

    Thanks

    • @SerranoAcademy
      @SerranoAcademy  Рік тому

      Wow, thank you so much for your kindness and generosity, @alexvass!

  • @AlexisKM100
    @AlexisKM100 Рік тому

    God damn it, this explanation was just straightforward, I loved it, it helped me to clarify many doubts I had, thanks :D
    Just how every explanation should be, concise and with practical examples.

  • @kr8432
    @kr8432 Рік тому +1

    I am not stupid but AI still does not come easy to me. Sometimes I wonder, besides having more slots in the working memory, how a genius or simply more intelligent people think about this subject so that it comes more naturally to them. I feel like this video was a very good insight on how easy such a complicated topic can appear, if you just have a very good intuitive understanding for abstract concepts. Very nicely done!

  • @faisaldj
    @faisaldj 3 роки тому

    I wish I had atleast my bachelors Math teacher like you but I would like to be like you for my students.

  • @rich_girl_bookclub
    @rich_girl_bookclub 3 місяці тому

    So comprehensive! Thank you!

  • @AyaAya-fh2wx
    @AyaAya-fh2wx 2 роки тому

    Thanks!

    • @SerranoAcademy
      @SerranoAcademy  2 роки тому

      Thank you so much for your contribution Aynur! And I'm so glad you like the video! :)

  • @shreyasdhotrad1097
    @shreyasdhotrad1097 3 роки тому +1

    Very intuitive as always.
    Expecting some more intuitions on semi supervised learning,energy models.
    Thank you so much sir!!🙏

  • @ብርቱሰው
    @ብርቱሰው 7 місяців тому

    Thank you for the wonderful video. Please add more practical example videos for the application of reinforcement learning.

    • @SerranoAcademy
      @SerranoAcademy  7 місяців тому

      Thank you! Definitely! Here's a playlist of applications of RL to training large language models. ua-cam.com/play/PLs8w1Cdi-zvYviYYw_V3qe6SINReGF5M-.html

  • @saphirvolvianemfogo1717
    @saphirvolvianemfogo1717 2 роки тому

    Amazing explanation. Thank you, it gives me a good starting point on DRL

  • @alexandermedina4950
    @alexandermedina4950 2 роки тому

    Great starting point for RL! Thank you.

  • @lucianoinso
    @lucianoinso Рік тому

    Truly great video and explanation! Loved that you went deep (haha) into the details of the neural network, thanks!

  • @SetoFPV
    @SetoFPV 7 місяців тому

    very good video, its very clear what is deep reinforcement learning from the bottom

  • @eeerrrrzzz
    @eeerrrrzzz 3 роки тому

    This video is a gem. Thank you.

  • @flwi
    @flwi 2 роки тому

    Wow - that was a very understandable explanation! Well done!

  • @ahmedoreby2856
    @ahmedoreby2856 2 роки тому

    very good video with excellent elaboration for the equation thanks you very much for this

  • @CrusadeVoyager
    @CrusadeVoyager 3 роки тому +1

    Nice vid with gr8 explanation on RL.

  • @infinitamo
    @infinitamo 3 роки тому

    You are a God-send. Thank you so much

  • @ZirTaaah
    @ZirTaaah 2 роки тому

    best vids on the subject for suuuuuuuure im mad that i didnt see it earlier nice broo

  • @RealNikolaus
    @RealNikolaus 2 роки тому

    Incredible video, I love the animations!

  • @siddiqkawser2153
    @siddiqkawser2153 7 місяців тому

    U rock dude! U just earned a new subscriber

  • @francescserratosa3284
    @francescserratosa3284 3 роки тому +1

    Excellent video. Thank's a lot!!

  • @banaiviktor6634
    @banaiviktor6634 3 роки тому

    Yes agree, no clear explanation on this topic apart from this video , thanks a lot, it is awesome ! :)

  • @diwakerkumar5910
    @diwakerkumar5910 Рік тому +1

    Thanks 🙏

  • @Shaunmcdonogh-shaunsurfing
    @Shaunmcdonogh-shaunsurfing 2 роки тому

    Excellent video! Hoping for more on RL.

  • @bjornnorenjobb
    @bjornnorenjobb 3 роки тому

    wow, extremely good video my friend! Big thanks!

  • @li-pingho1441
    @li-pingho1441 Рік тому

    this the best rl tutorial on internet

  • @paedrufernando2351
    @paedrufernando2351 3 роки тому +1

    cool...it took so long to drop this vid..I was earlier expecting RL videos from your site..but then I turned to Prof Oliver Siguad and completed RL there..Now I understand how DDPG works and internals of it..But I defintiley would want to see your take and perspective on this topic..So here I go again to watch this Video on RL ....

  • @emanuelfratrik1251
    @emanuelfratrik1251 2 роки тому

    Excellent explanation! Thank you!

  • @zamin_graphy
    @zamin_graphy 2 роки тому

    Fantastic explanation.

  • @egehepsen7810
    @egehepsen7810 Місяць тому

    very good explained you deserve a like :)

  • @mustafazuhair2830
    @mustafazuhair2830 3 роки тому

    You have made my day, thank you!

  • @rohitchan007
    @rohitchan007 3 роки тому

    This is by far the best explanation.

  • @zeio-nara
    @zeio-nara 2 роки тому

    An excellent explanation, thank you

  • @nothing21797
    @nothing21797 Рік тому +1

    Wunderbar!!!

  • @msantami
    @msantami 3 роки тому

    Thanks, great video. Bought the book!

    • @SerranoAcademy
      @SerranoAcademy  3 роки тому

      Great to hear, thank you! I hope you like it!

  • @prakashselvakumar5867
    @prakashselvakumar5867 3 роки тому

    Very well explained! Thank you

  • @joselee5377
    @joselee5377 Рік тому

    i fucking move this video. oh my goodness... the level of satisfaction of understanding something that i struggled to grasp ;)

  • @AyaAya-fh2wx
    @AyaAya-fh2wx 2 роки тому

    You are a genius!! Thank you!

  • @DrMukeshBangar
    @DrMukeshBangar 2 роки тому

    great video. easy explanation! thank you.

  • @leonsaurabh21
    @leonsaurabh21 8 місяців тому

    Great explanation

  • @sricinu
    @sricinu 3 роки тому

    Excellent explaination

  • @bostonlife8589
    @bostonlife8589 2 роки тому

    Fantastic explanation!

  • @AlexandriaLibraryGame
    @AlexandriaLibraryGame 2 роки тому +1

    I don't understand how to train the NN at 34:09, what are the features and what is the label?

  • @scooby95219
    @scooby95219 2 роки тому

    great explanation. thank you!

  • @wilmarariza9020
    @wilmarariza9020 3 роки тому

    Excellent! Luis.

  • @ahmarhussain8720
    @ahmarhussain8720 2 роки тому

    amazing explanation

  • @studgaming6160
    @studgaming6160 2 роки тому

    Finally good video on RL

  • @seraphiusNoctis
    @seraphiusNoctis 2 роки тому +2

    Loved the video, quick question on the policy network section, because something still seems a little “disjointed” in the sense that the roles for both networks do not seem to be clear - I might be missing something…
    I don’t understand why we would use a decreasing/recursive “gain” function instead of just using the value network for the purpose of establishing values for the policy. Instead, doesn’t the value network already build in feedback mechanism that would be well suited to this?

  • @antonioriz
    @antonioriz 3 роки тому

    This is simply GREAT! I would love to follow more video on the issue of Reinforcement Learning. By the way I'm really enjoying your book Grokking Machine Learning, but I would like to know more on RL

  • @ahmedshamz
    @ahmedshamz 10 місяців тому

    Thanks for these videos Luis. Are these from a course?

  • @roshanid6523
    @roshanid6523 3 роки тому +1

    Thanks for sharing

  • @Lukas-zl5zs
    @Lukas-zl5zs 2 роки тому

    amazing video, good work!

  • @paul-andrejacques2488
    @paul-andrejacques2488 3 роки тому

    Just Fantastic. Thank you

  • @RobertLugg
    @RobertLugg Рік тому +2

    You are one of the best teachers around. Thank you. What if the grid is different or the end goals change location? Do you need to start training over?

    • @SerranoAcademy
      @SerranoAcademy  Рік тому +1

      Thank you! Great question, If the environment changes in general you do have to start again. However, there may be cases in which you can piggy back from having learned the game in a simpler situation, so it depends.

  • @jaivratsingh9966
    @jaivratsingh9966 3 роки тому +1

    @Luis Serrano - thanks for this. Excellent!
    At 30:15 shouldnt (4,0) be -2 and hence (4,1) be -3 and so on.
    A Query on policy train: If you freeze video at 28:52, and look at the table. I see it as random walk where you end up to a reward location, and kind of infer the value (subtracting 1) from next value point and come up with 3,2,..-1. Why would you say the one should decrease
    p(->) for 0,0 ?
    At 0,0 (or any chosen node on simulated path), the moves always increase the value (better value state), then change should never be "decrease"). Also while training the net you dont use "Change". Then why are we discussing "Change" at all ?
    Shouldn't it be simply the probability of actual step each step to be higher than rest as it points to path leading to a reward?

    • @pjl7633
      @pjl7633 Місяць тому

      Totally agree. I also feel confused about this point

  • @kafaayari
    @kafaayari Рік тому

    Great lecture Mr. Serrano, thx. But some parts are inconsistent and confusing. For example at 29:49, for the state (3,1) the best action is to move left and agent went left. However you try to decrease its probability during training as seen in the table. That doesn't make sense.

  • @KathySierraVideo
    @KathySierraVideo 3 роки тому

    Thank-you for this 🙏