Lecture 4: Compact Metric Spaces

Поділитися
Вставка
  • Опубліковано 24 гру 2024

КОМЕНТАРІ • 7

  • @BorisTreukhov
    @BorisTreukhov Рік тому +9

    Thank you so much for publishing these lectures I always wanted to reorganize my knowledge regarding different compactess notions!
    Any plans on topology classes?

  • @ChrisRossaroDidatticaDigitale
    @ChrisRossaroDidatticaDigitale 4 місяці тому +1

    2:19 For a general metric space topologically compactness implies closure and boundedness and not viceversa.

    • @red1bk190
      @red1bk190 4 місяці тому

      Thanks for mentioning, because it confused me. I find it strange no one in the lectures is asking any questions about it.

  • @shawan7089
    @shawan7089 Рік тому +1

    Please make a course on number theory and abstract algebra

  • @DutchMathematician
    @DutchMathematician Рік тому +6

    @12:10:
    I think she made a logical thinking error here.
    Not totally bounded means (negating the definition), that...
    'there exists an ε>0' such that for all finite sets of y1, ..., yk (etc., keep negating).
    It should, however, not start with 'for every ε>0'.

  • @SphereofTime
    @SphereofTime 6 місяців тому

    0:22

  • @vremiavremiavremiavremia0617
    @vremiavremiavremiavremia0617 Рік тому +1

    😊😊😊😊😊😊😊😊😊😊😊😊😊