A Nice and Easy Functional Equation

Поділитися
Вставка
  • Опубліковано 2 лис 2024
  • 🤩 Hello everyone, I'm very excited to bring you a new channel (SyberMath Shorts).
    Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡
    / @sybermath
    / @aplusbi
    ⭐ Join this channel to get access to perks:→ bit.ly/3cBgfR1
    My merch → teespring.com/...
    Follow me → / sybermath
    Subscribe → www.youtube.co...
    ⭐ Suggest → forms.gle/A5bG...
    If you need to post a picture of your solution or idea:
    in...
    #algebra #functions #function
    via @UA-cam @Apple @Desmos @NotabilityApp @googledocs @canva
    PLAYLISTS 🎵 :
    ▶ Trigonometry: • Trigonometry
    ▶ Algebra: • Algebra
    ▶ Complex Numbers: • Complex Numbers
    ▶ Calculus: • Calculus
    ▶ Geometry: • Geometry
    ▶ Sequences And Series: • Sequences And Series

КОМЕНТАРІ • 14

  • @mystychief
    @mystychief 2 місяці тому +14

    The contradiction in this functional equation is always there (independent of the premise that f(x) it is linear or filling in certain values). Suppose t=1-x, so x=1-t. Filling this in the first functional equation gives f(1-t)-f(t)=1-t or f(1-x)-f(x)=1-x. Substract this from the first functional equation and you get 0=1. This contradiction proves that the first functional equation can never be possible for any x and there is no function possible for this functional equation.

    • @mekbebtamrat817
      @mekbebtamrat817 2 місяці тому +2

      Yep, much shorter contradiction is to use 1/2 for x. We get 0 =1/2

    • @almanduku9043
      @almanduku9043 2 місяці тому

      I found the same and was thinking about what's the problem about my solution 🤔💬

  • @norbertduchting6217
    @norbertduchting6217 2 місяці тому +3

    Evaluate for x= 1/2 and you are done.

  • @paulortega5317
    @paulortega5317 2 місяці тому +5

    Yep, let replace x with 1-x and you get f(x) - f(1-x) = x and f(x) - f(1-x) = x -1 ouch

  • @brendanward2991
    @brendanward2991 2 місяці тому +2

    f(x) - f(1-x) = f(x)
    f(1-x) - f(1-(1-x) = f(1-x) => f(1-x) - f(x) = f(1-x)
    Add both equations:
    0 = 1 => no solution.

  • @fadydavis7457
    @fadydavis7457 2 місяці тому

    You teach really good ❤😅

  • @nanamacapagal8342
    @nanamacapagal8342 2 місяці тому

    ATTEMPT:
    There's a symmetry in the equation. Plugging in y = 1 - x gives
    f(1-y) - f(y) = 1-y
    Multiply by -1 and switch out the dummy variable:
    f(x) - f(1-x) = x - 1
    But it was stated earlier that f(x) - f(1-x) = x.
    So x = x - 1, and that's a contradiction.
    There are no solutions to the functional equation.

  • @rajeshbuya
    @rajeshbuya 2 місяці тому

    I'm so very interested in your Functional equation-related problems.
    Can you please help solve
    f ' (x) = f (x + 1)

  • @StuartSimon
    @StuartSimon 2 місяці тому

    Can you please explain how you come up with functional equations with no solution? Branching out from a contradiction to me seems harder than branching out from a solution.

  • @phill3986
    @phill3986 2 місяці тому +1

    👍🔥😁✌️👏✌️😁🔥👍

  • @williamspostoronnim9845
    @williamspostoronnim9845 2 місяці тому

    Неужели это так обязательно - трещать как сорока?