Clifford torus rotating in 4D

Поділитися
Вставка
  • Опубліковано 18 лис 2024

КОМЕНТАРІ • 40

  • @esmeralda7060
    @esmeralda7060 3 роки тому +25

    The blanket at 3am when ur trying to find the correct side:

  • @mercedesft
    @mercedesft 3 роки тому +7

    I coincidentally play this video while listening a Philip Glass álbum. It was funny to find out very late that the music video were not coming out of Glass jeje. (Btw, here a big big toroidal fan, i really Love your channel).

    • @wugionyoutube
      @wugionyoutube  3 роки тому +3

      Gracias caballero. Not sure if Philip Glass (Koyaanisqatsi!) uses fractal lines in his music. I made this in my youth, before having heard of fractals and before knowing that my "guido's sequence" is actually called Thue-Morse sequence ;o) BTW do you know John Adams and his Harmonium? Also great repetitive music.

  • @kustomweb
    @kustomweb 6 років тому +10

    I'm interested in the effect of the rotation of 4D objects on the 3D components, specifically the direction of the 4D acceleration vector. Could you demonstrate/investigate? Great video.

    • @wugionyoutube
      @wugionyoutube  6 років тому +3

      I'm not sure what you mean but I'll answer for the best.
      In 4D the base planes (eg, the X and Y plane, the real and imaginary plane) have a single point intersection: the origin. A rotating base plane does so around its complementary base plane, eg, X rotates around Y, the imaginary plane around the real plane (this is so because it rotates around any direction of the other plane). The acceleration vector points to the intersectioin of the rotating plane and the axis (3D) or plane (4D) of rotation, in our case the intersection of both base planes, ie, the origin.
      As for the effect of the 4D rotation on 3D components, I understand this as "how is the rotation seen in 3D?". Well, that's exactly what is shown in the video: projections of the rotating 4D object onto 3D or, in our case, onto 2D (a flat screen!) but which can be "re-interpreted" as 3D space.
      (I notice that I've messed up between axis notations x+iy and z+iw, versus x+iy and u+iv)

    • @wugionyoutube
      @wugionyoutube  6 років тому +3

      BTW thank you.

  • @yeetus_dafeetus5323
    @yeetus_dafeetus5323 3 роки тому +11

    It looks 2D, 3D and 4D at the same time

    • @wugionyoutube
      @wugionyoutube  3 роки тому +2

      Well, it is "true 4D", projected in 3D-style on to 2D screen ;-) The "true 4D" part is correct though, and rather seldom seen, most mainstream math prefers 3D-extractions...

    • @4DMovie
      @4DMovie Рік тому +2

      Yes, you are seeing correctly. Each dimension is composed of it's lower dimensions. Randal J. Bishop

  • @festiveFurry
    @festiveFurry 5 років тому +10

    Pls upload this music to google drive or similar, I WANT IT!

    • @wugionyoutube
      @wugionyoutube  5 років тому +1

      Thanks! Go to my music site www.wugi.be/muziekte.htm and look for "Fraktet". You can download the .mid, .mp3, .pdf score and .encore files. I didn't know at the time I created it (as a youth:-) that the fraktet theme represents actually the en.wikipedia.org/wiki/Thue%E2%80%93Morse_sequence . (Hint: you can paste video url links and extract mp3 music here: mp3-youtube.download/en )

    • @festiveFurry
      @festiveFurry 4 роки тому +1

      @@wugionyoutube yeah, thanks

  • @belive-cb8jp
    @belive-cb8jp 8 років тому +5

    Great Work!

    • @wugionyoutube
      @wugionyoutube  8 років тому +1

      Thank you! (have you seen the other video of the C. Torus and its 3D projection combined?)

    • @belive-cb8jp
      @belive-cb8jp 8 років тому

      Guido W.
      Yes - and your website - thanks Brother!

  • @forlorneater6595
    @forlorneater6595 4 роки тому

    I have never heard of a Clifford taurus, but I love them now

    • @wugionyoutube
      @wugionyoutube  4 роки тому

      Thank you, I appreciate. It's also a rather recent discovery for me (and more so the "taurus", could it be a bull's eye? ;-)

    • @user-REMOTEISLIFE
      @user-REMOTEISLIFE 5 місяців тому

      *torus

  • @ericthiel6553
    @ericthiel6553 3 роки тому +1

    You are melting my brain

    • @wugionyoutube
      @wugionyoutube  3 роки тому +1

      Look for my latest Clifford torus videos, for enlightenment ;-0)

  • @johnstfleur3987
    @johnstfleur3987 Рік тому

    "PERFECT."

  • @DustyOldBones
    @DustyOldBones 4 роки тому +3

    makes me feel uneasy to look at it.

    • @wugionyoutube
      @wugionyoutube  4 роки тому

      Perhaps you don't fancy 4D exploration ;-)

  • @joshzeidner5412
    @joshzeidner5412 5 років тому +5

    That music

    • @wugionyoutube
      @wugionyoutube  5 років тому +3

      A musical Thue-Morse sequence... "discovered" by meself when a child knowing nothing about fractals...

    • @joshzeidner5412
      @joshzeidner5412 5 років тому

      @@wugionyoutube Interesting videos

  • @ХАСМАН-ш3ф
    @ХАСМАН-ш3ф 6 років тому

    This video: ua-cam.com/video/KUwWPsXFLOA/v-deo.html shows, how to create 4D cubinder (4D cube, which built from 3D cylinders). If you want to create your own 4D shapes, you can use the link, which is in description under that video.

  • @ParDiss-e4i
    @ParDiss-e4i 11 місяців тому

  • @LEMONMANIZATION
    @LEMONMANIZATION Рік тому

    I know this is a wild request, but have you ever rotated a Ditorus?
    I believe Quantum objects are 4th Spatial-dimension shapes

    • @wugionyoutube
      @wugionyoutube  Рік тому +1

      Thank you. I'm happy to deal with 4D surfaces, but I'm afraid 4-dimensional 3D-spaces are beyond my capabilities! ;o) Anyway, generally speaking only surfaces can be rendered, even in 4D: 4D volumes and 3D-in-4D volumes can only be rendered by their bordering or generating surfaces, see renderings of tesseract and 3-sphere for example.

  • @manuelpineda5031
    @manuelpineda5031 2 роки тому

    You forgot the w plane

    • @wugionyoutube
      @wugionyoutube  2 роки тому

      The z plane (abscis) is formed by the x and y axes. The w plane (ordinate) by the u and v axes, which incidentally I first called the z and w axes in the video, and then proceeded calling it the u,v plane :o) Basically z=x+iy, and w=u+iv (or w="z"+i"w", sorry for that).

  • @cubing7276
    @cubing7276 4 роки тому +1

    I don't understand a thing

    • @Gracejohnys
      @Gracejohnys 4 роки тому +1

      Me too. I’m going to research more about it.

    • @forlorneater6595
      @forlorneater6595 4 роки тому

      It is like how a circle is to a sphere that the taurus is to a Clifford taurus

    • @cubing7276
      @cubing7276 4 роки тому

      @@forlorneater6595 Taurus? Wtf is that

    • @wugionyoutube
      @wugionyoutube  3 роки тому

      In the mean time there are 5 videos ("Wugi's 4D world") dealing with the Clifford torus and its companions.

    • @Crazytesseract
      @Crazytesseract 2 роки тому

      @@wugionyoutube Have you made videos on the duocylinder? I find it very difficult to visualise. And what is a tiger? I heard it is extremely difficult to visualise.