G-54. Strongly Connected Components - Kosaraju's Algorithm

Поділитися
Вставка
  • Опубліковано 30 лис 2024

КОМЕНТАРІ • 222

  • @nakulmantri1235
    @nakulmantri1235 Місяць тому +3

    Undeniably the best teaching methodology and the content for strengthening DSA

  • @adithyabhat4770
    @adithyabhat4770 Рік тому +12

    Your videos and the SDE sheet are helping me so much to brush up the DSA concepts and learn the ones I ignored in college. A BIG THANK YOU!!

  • @KUMARASHISHRANJAN
    @KUMARASHISHRANJAN Рік тому +32

    The above code gave me `TLE`
    so, with few minor changes it will work for you.
    To optimize the given code, you can make a few changes to improve its efficiency:
    1. Pass the `adj` vector as a reference to the `dfs` function: Currently, the `adj` vector is passed by value, which creates a copy of the vector in each recursive call. Instead, pass it by reference to avoid unnecessary copies.
    2. Use a vector of vectors (`adjT`) instead of an array of vectors for the transpose graph: Declaring `vector adjT[V]` as a variable-length array may cause a stack overflow for large values of `V`. Instead, use a vector of vectors to represent the transpose graph (`adjT`).
    3. Reserve memory for the transpose graph vectors: Before pushing elements into `adjT`, reserve memory for each vector based on the size of the corresponding adjacency list in the original graph. This avoids frequent reallocations and improves performance.
    4. Use vectors instead of stacks: Instead of using a stack to store the finish times of the nodes in the first DFS, you can use a vector and append nodes at the end. This eliminates the need for reversing the stack later on.
    Here's the optimized code with these changes:
    Code :
    class Solution {
    private:
    void dfs(int node, vector& adj, vector& vis, vector& finishOrder) {
    vis[node] = 1;
    for (int it : adj[node]) {
    if (!vis[it]) {
    dfs(it, adj, vis, finishOrder);
    }
    }
    finishOrder.push_back(node);
    }
    void dfs2(int node, vector& adj, vector& vis) {
    vis[node] = 1;
    for (int it : adj[node]) {
    if (!vis[it]) {
    dfs2(it, adj, vis);
    }
    }
    }
    public:
    // Function to find the number of strongly connected components in the graph.
    int kosaraju(int V, vector& adj) {
    vector vis(V, 0);
    vector finishOrder;
    for (int i = 0; i < V; i++) {
    if (!vis[i]) {
    dfs(i, adj, vis, finishOrder);
    }
    }
    // Creating the transpose graph (adjT)
    vector adjT(V);
    for (int i = 0; i < V; i++) {
    vis[i] = 0;
    for (int it : adj[i]) {
    adjT[it].push_back(i);
    }
    }
    // Last DFS using the finish order
    int scc = 0;
    for (int i = V - 1; i >= 0; i--) {
    int node = finishOrder[i];
    if (!vis[node]) {
    scc++;
    dfs2(node, adjT, vis);
    }
    }
    return scc;
    }
    };
    These optimizations should improve the efficiency of the code.

  • @sahiltambe9085
    @sahiltambe9085 2 місяці тому +2

    Your explanation goes straight inn , such a brilliant teacher!!

  • @dishant930
    @dishant930 Рік тому +30

    I think after seeing the video if you read the striver sheet explanation for the same question it will give you more insight since it is really well written. I really liked it!

  • @kushagrasrivastava1443
    @kushagrasrivastava1443 2 роки тому +120

    I thought I was done with graphs 😅

  • @adebisisheriff159
    @adebisisheriff159 10 місяців тому +6

    Honestly, this playlist deserves Millions views and comments..... Thanks for all you do Striver!!!

  • @neelulalchandani7429
    @neelulalchandani7429 3 місяці тому

    Brilliant explanation! Thanks for the graph series, the best teacher ever!

  • @rishabhjain6272
    @rishabhjain6272 6 місяців тому +2

    the first step is same as topo sort using dfs technique, will not work with bfs (khann's algo) due to directed cyclic graphs.but if you apply topo sort using dfs in directed cyclic graphs ,it will work.

  • @eswartharun3394
    @eswartharun3394 2 роки тому +12

    This is much intutive than the previous video on kosaraju(other graph playlist)

    • @takeUforward
      @takeUforward  2 роки тому +39

      Yes I read the comments, and then made this one.

    • @dhirendrasingh6071
      @dhirendrasingh6071 Рік тому +6

      @@takeUforward you have changed the lives of so many students, you have blessings of many. ♥️

    • @tanmaypal2003
      @tanmaypal2003 Рік тому +7

      ​@@takeUforward when we sort all the edges according to finishing time and store it in stack like this 0,1,2,3,4,5,6,7 , so instead of storing in stack can we use queue and then when we pop out elements from queue we start DFS from 7 instead of 0 and 7 is not connected to anyone so we found 1st SCC then we pop 6 and do DFS and found 2nd SCC then we pop 3 and do DFS and got 3rd SCC and so on. In this approach we don't need to reverse the graph. Can we do like this?

    • @vishalsinghrajpurohit6037
      @vishalsinghrajpurohit6037 Рік тому +1

      @@tanmaypal2003 Nice observation. I think this should work fine.

    • @theSoberSobber
      @theSoberSobber Рік тому +1

      @@tanmaypal2003 yes

  • @chandrachurmukherjeejucse5816
    @chandrachurmukherjeejucse5816 Рік тому +1

    And here comes the real OG Striver.❤

  • @ShreyaLanka-1912
    @ShreyaLanka-1912 4 місяці тому +1

    Understood!! Thank you for this amazing explanation.

  • @KaushalDhruw
    @KaushalDhruw Рік тому

    Finally understood kosaraju algo. Thank you striver.

  • @vaishalidev6621
    @vaishalidev6621 2 місяці тому

    you are really good man!!! appreciate ur clarity of thoughts and words!! kudos and best wishes!!🎉

  • @vaibhavgupta7429
    @vaibhavgupta7429 Місяць тому

    thanks for the clear explanation of this complicated topic

  • @muskanchaurasia1532
    @muskanchaurasia1532 Рік тому +2

    Just amazing.
    Great Explanation.

  • @cinime
    @cinime 2 роки тому +9

    Understood! Super excellent explanation as always, thank you very much!!

  • @stith_pragya
    @stith_pragya 11 місяців тому +1

    Thank You So Much for this wonderful video..............🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻

  • @augustinradjou3909
    @augustinradjou3909 9 місяців тому

    Going to end the graph..❤ understood

  • @Emperor723
    @Emperor723 6 місяців тому +1

    mazaaaaaaa aaaaaaaagyaaaaaaaaaaa
    this is first time i have come across any of your videos
    der aaye par durust aaye....
    let me subscribe!

  • @andreasleonidou3620
    @andreasleonidou3620 Рік тому +4

    Excellent tutorial and really helpful, thanks!!

  • @rahulsangvikar7973
    @rahulsangvikar7973 7 місяців тому +3

    Just realised one thing. You can avoid reversing the graph if you were to put the time in a queue instead of a stack.

    • @reee896
      @reee896 7 місяців тому

      No you need stack cause if you use Queue it will keep going on to next SSC using the visited araay

    • @KeigoEdits
      @KeigoEdits 3 місяці тому

      exactly my thought

  • @nizh3278
    @nizh3278 27 днів тому

    My Last graph question for this series 😊

  • @mraryanrajawat9693
    @mraryanrajawat9693 2 роки тому +7

    class Solution
    {
    private:
    void dfs(int node,vectoradj[],vector&vis,stack&st) // dfs for adj
    {
    vis[node]=1;
    for(auto it:adj[node])
    {
    if(vis[it]==0)
    {
    dfs(it,adj,vis,st);
    }
    }
    st.push(node);
    }
    void dfs2(int node,vectoradjT[],vector&vis) // dfs for adjT
    {
    vis[node]=1;
    for(auto it:adjT[node])
    {
    if(vis[it]==0)
    {
    dfs2(it,adjT,vis);
    }
    }
    }
    public:
    //Function to find number of strongly connected components in the graph.
    int kosaraju(int V, vector adj[])
    {
    vectorvis(V,0);
    stackst;
    vector adjT[V]; // adj list after reversing edges
    for(int i=0;i

  • @sahilbheke4083
    @sahilbheke4083 Рік тому

    You are a very good teacher apse sikhna easy lagta hai

  • @ManishKumar-zm9rj
    @ManishKumar-zm9rj Рік тому +3

    We can use the same dfs again by passing a dummy stack:
    public void dfs(ArrayList adj, int[] vis, Stack st, int node){
    vis[node] = 1;
    for(int it : adj.get(node)){
    if(vis[it] == 0){
    dfs(adj, vis, st, it);
    }
    }
    st.push(node);
    }
    //Function to find number of strongly connected components in the graph.
    public int kosaraju(int V, ArrayList adj)
    {
    int[] vis = new int[V];
    Stack st = new Stack();
    for(int i = 0; i < V; i++){
    if(vis[i] == 0){
    dfs(adj, vis, st, i);
    }
    }
    ArrayList adjT = new ArrayList();
    for(int i = 0; i < V; i++) adjT.add(new ArrayList());
    for(int i = 0; i < V; i++){
    vis[i] = 0;
    for(int it : adj.get(i)){
    // previously: i -> it
    // Now make it: i i
    adjT.get(it).add(i);
    }
    }
    int scc = 0;
    while(!st.isEmpty()){
    int node = st.pop();
    if(vis[node] == 0){
    scc++;
    dfs(adjT, vis, new Stack(), node);
    }
    }
    return scc;
    }

  • @abcsumits
    @abcsumits Рік тому +3

    sorting according to finish time can be done using toposort:)

    • @deviprasad_bal
      @deviprasad_bal Рік тому +1

      that is toposort only. Toposort can be done using stack and that's what it is here.

    • @DheerajDivaker
      @DheerajDivaker Рік тому

      @abcsumit Toposort banega hi nahi, wo sirf DAG mein work karta hai.

    • @DheerajDivaker
      @DheerajDivaker Рік тому

      @@deviprasad_bal Toposort banega hi nahi, wo sirf DAG mein work karta hai.

    • @Anonymous_Coder
      @Anonymous_Coder Рік тому +3

      @@DheerajDivaker Yes you are right but here since graph can be cyclic as well as acyclic , so incase of CYCLIC one edge which is causing cycle is not stored , like 1->2->3->1 , is only stored as [ 1, 2 ,3 ] .
      So ultimately we should not call it as a toposort ,but implementation is exactly same.

    • @DheerajDivaker
      @DheerajDivaker Рік тому

      @@Anonymous_Coder yes absolutely correct.

  • @rohinianekar61
    @rohinianekar61 Рік тому +2

    understood, nice explanation

  • @iamnoob7593
    @iamnoob7593 2 місяці тому

    Man Striver ur incredible

  • @sathvikmalgikar2842
    @sathvikmalgikar2842 9 місяців тому +2

    guys just in case any one wondering why that stack of dfs calls was required that is only if u r solving for the second case of actually printing the components and not just finding number of components.
    like based on the stack trace u can make a note of elements while popping and put them into groups and print

    • @vishalcheeti8374
      @vishalcheeti8374 4 місяці тому

      without using stack, how to do solve the first case of finding no. of compo? I mean to find no. of components also we need it in sorted way right?

    • @amansingh.h716
      @amansingh.h716 2 місяці тому

      @@vishalcheeti8374 we already reversed the graph so it will count the component for every dfs call,but somehow without stack its not working

  • @jaishriharivishnu
    @jaishriharivishnu 5 місяців тому

    Note: we can't say this as a Topological sort(as topological sort using DFS will get you stuck in Loop i.e cycle), but its a bit different. Its topological Sort for the SCC.

  • @kritikarawat2180
    @kritikarawat2180 Рік тому

    Man, amazing explaination. Hats off to you buddy

  • @Parthj426
    @Parthj426 4 місяці тому

    Understood after a little bit of effort.

  • @Mr_Cat_11
    @Mr_Cat_11 2 роки тому +6

    Long time no see sir 😊
    Thank you for posting 🥰🔥💖

  • @krishnavyaskondle5707
    @krishnavyaskondle5707 Рік тому

    Thanks for Explaining the logic

  • @AmanKumar-wd2mq
    @AmanKumar-wd2mq Рік тому

    You explain so well ❤❤

  • @UECAshutoshKumar
    @UECAshutoshKumar 11 місяців тому +1

    Thank you sir 🙏

  • @veekykumar4211
    @veekykumar4211 2 роки тому

    great work sir i just watch ur few video and ur content is awesome

  • @wilhelmrudolphfittig3577
    @wilhelmrudolphfittig3577 5 місяців тому

    maza aaala re ala striver aala

  • @space_ace7710
    @space_ace7710 Рік тому +4

    GFG compiler giving TLE, don't know why?? :(

  • @bhavikpunmiya9641
    @bhavikpunmiya9641 Рік тому

    Thanks for Explaining this concept :) really liked your explaination

  • @vardhanbolla-kz7xe
    @vardhanbolla-kz7xe Рік тому +1

    This code is giving tle in gfg, the below code is same as what you thought
    class Solution
    {
    private:
    void dfs(int node, vector &vis,vector adj,stack &st)
    {
    vis[node]=1;
    for(auto it: adj[node])
    {
    if(vis[it]==0)
    {
    dfs(it,vis,adj,st);
    }
    }
    st.push(node);
    }

    void dfs1(int node, vector &vis, vector adjT[])
    {
    vis[node]=1;
    for(auto it: adjT[node])
    {
    if(vis[it]==0)
    {
    dfs1(it,vis,adjT);
    }
    }
    }
    public:
    //Function to find number of strongly connected components in the graph.
    int kosaraju(int V, vector& adj)
    {
    //code here
    vector vis(V,0);
    stack st;
    for(int i=0;i

    • @Lullurluli
      @Lullurluli 11 місяців тому

      To resolve this issue, make sure that adjT is declared as a vector of vectors
      vectoradjT(V);

  • @divyareddy7622
    @divyareddy7622 2 роки тому

    thank you very muchhh! You've literally changed so many lives ✌️

  • @249abhi
    @249abhi Рік тому

    awesome explanation!

  • @amitp277
    @amitp277 Рік тому

    Awesome work 👏

  • @anagharaveendra53
    @anagharaveendra53 3 дні тому

    When we are finding out the time complexity of any algorithm, why isn't the lower bound also considered??
    Ideally speaking for the method of dfs, the time complexity is theta(V + E).
    So the time complexity of SCC must also be theta(V + E).

  • @devanshubilthare5277
    @devanshubilthare5277 Рік тому

    Amazing content🔥

  • @UjjawalPathak-qy3uj
    @UjjawalPathak-qy3uj 5 місяців тому

    HEY STRIVER, We can also reduce the time and steps if first getting there there finishing time and store in a queue rather then stack so because of FIFO we know first element to finish so we don't need to reverse the graph either we can directly go through the finishing elements which are already reverse with respect to graph it will reduce steps and clean code too.
    correct me if I m wrong

    • @Nirvanaattainer54
      @Nirvanaattainer54 Місяць тому

      yes you are wrong. on so many levels that it cant be fixed anymore.

  • @parshchoradia9909
    @parshchoradia9909 Рік тому

    Understood Sir!

  • @ms-ej4gd
    @ms-ej4gd 2 роки тому

    Big fan of your work striver

  • @mr.dependable4885
    @mr.dependable4885 2 роки тому +5

    Why is it important to reverse the edges, can't we just start the dfs in reverse order ?
    Like in the example start from 7
    can any1 please explain

    • @arpitrajput6424
      @arpitrajput6424 Рік тому

      we can't .try dryrun on 1st example ,
      suppose u created vector which store the timing then timing will be
      {1 2 4 3 0} if you try dfs accoording to this you still cannot find scc.

    • @shivamsangwan7268
      @shivamsangwan7268 Рік тому +1

      Yes, you can do that. But, this video is about Kosaraju's algorithm, which is implemented this way.

  • @paruldamahe7969
    @paruldamahe7969 9 місяців тому

    amazing content!

  • @sauravchandra10
    @sauravchandra10 Рік тому

    Understood, thanks!

  • @AryanMathur-gh6df
    @AryanMathur-gh6df Рік тому

    UNDERSTOOD

  • @sharathkumar8338
    @sharathkumar8338 2 роки тому +7

    Understood brother. Could you please upload videos on sliding window and 2 pointers?? I saw most amazon OA will be based on that only.

  • @-VLaharika
    @-VLaharika Рік тому

    Understood 👍

  • @Rajat_maurya
    @Rajat_maurya 2 роки тому +8

    why we need to sort, why can't we simply use ?
    for(int i=0;i

    • @jahanvichaudhary81
      @jahanvichaudhary81 Рік тому

      same question

    • @rahulsangvikar7973
      @rahulsangvikar7973 7 місяців тому

      Sorting makes you sure that you process those nodes first which lie at the end of a directed path. If you apply it randomly, you might start dfs from the start node or any node in the middle and will visit the nodes that are not a part of the SCC as well.

    • @amansingh.h716
      @amansingh.h716 2 місяці тому

      @@rahulsangvikar7973 but we already reversed the nodes and its not connected anymore ,,,also we have visited array so we can ignore already processed node

  • @ritulraj6119
    @ritulraj6119 Рік тому

    🔥🔥🔥🔥
    Explanation

  • @manasranjanmahapatra3729
    @manasranjanmahapatra3729 Рік тому

    Understood.

  • @ravipatel-xu5qi
    @ravipatel-xu5qi 9 місяців тому

    Why sorting is needed. Can't be simply reverse the edges and then do dfs on all the nodes. We can get group of nodes which are there in cycle which is ultimately our strongly connected components.

    • @lavanya_m01
      @lavanya_m01 8 місяців тому

      By doing that you've completely ignored the "Finish time" concept. While doing the dfs in the transpose graph( with reverse edges) you should start with the component which does not have an edge going to the other scc.. that's why we use a stack and pop the top most element to perform dfs. If u want, I'll post my python code

    • @harshkumargupta8538
      @harshkumargupta8538 Місяць тому

      Please perform a dry run for the first example. Swap nodes 0 and 7, and then complete the dry run.

  • @no---on
    @no---on 9 місяців тому

    In given example if we just make a little change with 3->2 then after reversing the edge will be 2->3 so in step 3 dfs call 2 will also go to 3 . I feel like it should not go to 3

    • @abhishekchoudhary7030
      @abhishekchoudhary7030 8 місяців тому

      i have the same confusion that if we start with 7 in the start rather than 0 , we will get wrong connected components

  • @h6_wingers
    @h6_wingers Рік тому

    mast padha dia bahiya

  • @muditkhanna8164
    @muditkhanna8164 Рік тому

    please make videos on Eulerian paths also.

  • @ayushman_sr
    @ayushman_sr 11 місяців тому

    thought process is very tricky

  • @divyatejaswinivengada6368
    @divyatejaswinivengada6368 Рік тому

    Understooddd!!

  • @subrahmanyammartha9531
    @subrahmanyammartha9531 2 місяці тому

    @striver... is there really a need to reverse the graph...or the edges...
    After finding the finishing times and storing them....we could start dfs with the ascending order of finishing time....that would give us the 7th node first...then 6th....then 3rd and then 2nd..... this would give us 4 SCC and also the SCC ....may be just in a different order but still SCC

  • @suryakiran2970
    @suryakiran2970 Рік тому

    Understood❤

  • @manojnavinjamuri5867
    @manojnavinjamuri5867 Рік тому +1

    understood

  • @visheshagrawal8676
    @visheshagrawal8676 Рік тому

    amazing content

  • @Kupo3.0
    @Kupo3.0 Рік тому

    Understood!

  • @piyushacharya7696
    @piyushacharya7696 2 роки тому

    reach++
    Loved it

  • @dumpster-jackson
    @dumpster-jackson 7 місяців тому

    Understood!!

  • @dhruvn6522
    @dhruvn6522 Рік тому +2

    Sir is sorting edges according to finishing time same as topological sort?

    • @discuss1
      @discuss1 7 місяців тому

      Will topological sort work in cyclic graphs?

  • @sukhpreetsingh5200
    @sukhpreetsingh5200 Рік тому +1

    Awesome thanks a lot

  • @mriduljain6809
    @mriduljain6809 Рік тому

    Understood

  • @RISHABHKUMAR-w5z
    @RISHABHKUMAR-w5z 4 місяці тому

    If you don't understand in one go just watch the video in 1x you will get better understanding slowly

  • @nisanduathsara5242
    @nisanduathsara5242 8 місяців тому

    understooood

  • @GANESHSINGH-uc1gk
    @GANESHSINGH-uc1gk 2 роки тому

    crystal clear

  • @mathematics7746
    @mathematics7746 Рік тому

    awsm explanation thank u so much

  • @ElderMoro
    @ElderMoro 2 роки тому +1

    Thanks buddy

  • @nitinkumar5974
    @nitinkumar5974 6 місяців тому

    thanks for the video

  • @abhinavbhardwaj3372
    @abhinavbhardwaj3372 Рік тому

    understood sir

  • @dinoarmy2440
    @dinoarmy2440 2 місяці тому

    A single dfs will work by using flag(fillStack) parameter....

  • @sahilshile25
    @sahilshile25 9 місяців тому

    Hey
    class Solution
    {
    private:
    void dfs(int node, vector &vis, vector adj,
    stack &st) {
    vis[node] = 1;
    for (auto it : adj[node]) {
    if (!vis[it]) {
    dfs(it, vis, adj, st);
    }
    }
    st.push(node);
    }
    private:
    void dfs3(int node, vector &vis, vector adjT) {
    vis[node] = 1;
    for (auto it : adjT[node]) {
    if (!vis[it]) {
    dfs3(it, vis, adjT);
    }
    }
    }
    public:
    int kosaraju(int V, vector& adj)
    {
    vector vis(V, 0);
    stack st;
    for (int i = 0; i < V; i++) {
    if (!vis[i]) {
    dfs(i, vis, adj, st);
    }
    }
    vector adjT(V);
    for (int i = 0; i < V; i++) {
    vis[i] = 0;
    for (auto it : adj[i]) {
    // i -> it
    // it -> i
    adjT[it].push_back(i);
    }
    }
    int scc = 0;
    while (!st.empty()) {
    int node = st.top();
    st.pop();
    if (!vis[node]) {
    scc++;
    dfs3(node, vis, adjT);
    }
    }
    return scc;
    }
    };
    This same code giving TLE on GFG

    • @abelphilip1642
      @abelphilip1642 9 місяців тому

      I guess they updated the time limit thingy

  • @discuss1
    @discuss1 7 місяців тому

    How do I pick the starting node for sorting.
    In the above example if we would have started sorting from Node 3, I would have never reached 0, 1, 2. So how to calculate this increasing time for all nodes efficiently.

  • @ronitkaushik4634
    @ronitkaushik4634 3 місяці тому

    whats the problem in doing only reversing thr edges and dfs. why store them in first?

  • @adamyasharma_0135
    @adamyasharma_0135 9 місяців тому

    amazing..

  • @herculean6748
    @herculean6748 Рік тому

    Thanks🙌

  • @tanmaybro3812
    @tanmaybro3812 5 місяців тому +1

    Isn't the first step same as topological sort?

  • @adityavaste8963
    @adityavaste8963 Рік тому +2

    Can we skip the step 1, and just reverse all the edges ? Because after reversing edges, components will be logically separated and we can run DFS on it separately, and can find the nodes in each component.
    Please can anyone guide me on this ?

    • @adityavaste8963
      @adityavaste8963 Рік тому

      Ohh, got it. It's for the efficiency

    • @Jinxed192
      @Jinxed192 Рік тому +2

      for eg, in the same example as striver's, if you reverse the edge between 2 & 3, with your process, when the graph is reversed, the dfs(0) has 3 as well in it, this is the loop hole. Whereas, in the algo, when we do dfs first and calculate finishing times, we get 3 at the top of the stack, so now we can make different dfs calls for each scc. Hope you understand. Have a great day!

    • @adityavaste8963
      @adityavaste8963 Рік тому +1

      ​@@Jinxed192 Thanks for explaination.
      That means we must know from where to start, to void futher conflicts.

    • @VISHALMISHRA-ff2ih
      @VISHALMISHRA-ff2ih 3 місяці тому

      @@Jinxed192 the edge is like 0->1, 1->2 , 2->0 , 2->3 then how you are saying reversing the edges between 2->3 will be inside the dis(0)..And what Aditya is commenting is totally fine.

  • @hardikjain-brb
    @hardikjain-brb 11 місяців тому +1

    The problem with graphs:
    The algos are easy code is easy dry run is easy chill
    But almost everytime this ques isnt answered Why this algo works like the basis of working of algorithms>
    Moreover this all is so volatile I'll forget this like in what 3 days>?

  • @udaypratapsingh8923
    @udaypratapsingh8923 Рік тому

    understood 🥶

  • @nikhil_squats
    @nikhil_squats 3 місяці тому

    is first step similiar to topo sort?

  • @manikiran949
    @manikiran949 5 місяців тому +1

    Isnt that stack thing, is topological sort ?

    • @hardikjuneja1
      @hardikjuneja1 4 місяці тому

      The difference lies in the absence of a cycle in the original example, as per the definition of topological sorting. This implies that we should first check for cycles before attempting to find a topological sort. In the provided example, however, we are generating an order where nodes are arranged based on the time they were visited. This is facilitated by the algorithm's flow, which uses a visited array ensuring that each node is visited exactly once. If a cycle were detected during traversal, the algorithm would indicate this by returning false, signifying that a valid topological sort does not exist. In this context, the primary purpose is to populate the stack for subsequent manipulations and operations, rather than solely ensuring a strict topological order.

    • @hardikjuneja1
      @hardikjuneja1 4 місяці тому

      Understanding this algorithm can be quite complex because it isn't solely reliant on the direction of traversal or the starting node for the initial DFS. Additionally, it doesn't guarantee visiting all nodes in a single DFS pass. The crucial aspect is how the algorithm manages to account for these complexities using the stack, even after performing edge reversals.
      The algorithm's sophistication lies in its ability to handle these scenarios by utilizing the stack effectively, ensuring that it accommodates inversions regardless of traversal direction or initial starting conditions.

    • @hardikjuneja1
      @hardikjuneja1 4 місяці тому

      For example, let's consider SCC1, SCC2, SCC3, SCC4, SCC5. Suppose node 0 is in SCC3, and SCC3 leads to SCC4, and SCC4 leads to SCC5. However, SCC2 leads to SCC3, and SCC1 leads to SCC2.
      So, you start DFS from SCC3 and visit SCC4 and SCC5 in the first traversal. The stack will store them. During the initial DFS traversal, the backtrack keeps track of the order of elements in that stack and fills them in an order based on finishing time.
      Now, SCC2 and SCC1 are still unvisited, but here's the interesting part: in the next steps of DFS traversal, even though DFS is called for them later, they will finish before 0 in terms of finishing time. This is because the DFS for SCC2 and SCC1 starts after the DFS for 0 ends completely. Kosaraju ingeniously used iteration with backtracking to manage this complex traversal.
      When DFS is called to calculate SCC2 (the third step in the example), this time, since we have reversed the edges, DFS would not go to SCC3 as it normally would, because SCC3 couldn't reach SCC2 in the original direction (this aspect demonstrates the algorithm's elegance).
      Therefore, recursion and iteration work together seamlessly to make this algorithm effective.

    • @hardikjuneja1
      @hardikjuneja1 4 місяці тому

      Imo , the best graph algorithm.

    • @manikiran949
      @manikiran949 4 місяці тому

      @@hardikjuneja1 Thank you for detailed explanation bro 😃

  • @afraztanvir973
    @afraztanvir973 Рік тому

    Is there any relation in this algo and topo sort as we get reverse topo from stack

  • @pavanrai6196
    @pavanrai6196 Рік тому +1

    Can't we use queue and then not reversing the edges and just count no of scc of back, but it's not working idk

    • @DheerajDivaker
      @DheerajDivaker Рік тому

      edges ko reverse karne se SCCs separate ho rahe hai..

  • @anishraj66
    @anishraj66 Рік тому +2

    bhaiya can,t we solve it by reversing the stack instead of reversing the graph

    • @visheshagrawal8676
      @visheshagrawal8676 Рік тому +1

      stack reversal will reverse the finish time but reversing the graph does not allow us to go from one scc to another scc

  • @PalashAgrawalECE
    @PalashAgrawalECE Рік тому

    19:55 Why did you mention to write as private function. Is there any advantage of it over public. As I tested in run time and got public working faster than private. Also from outer source noone is calling that dfs function. So kindly elaborate please

  • @p38_amankuldeep75
    @p38_amankuldeep75 2 роки тому

    understood💛💙💛

  • @PankajGupta-cx3ji
    @PankajGupta-cx3ji Рік тому

    choit💥💥💥