the most elegant way to integrate sqrt(cot(x))-sqrt(tan(x))

Поділитися
Вставка
  • Опубліковано 12 січ 2025

КОМЕНТАРІ • 188

  • @OonHan
    @OonHan 6 років тому +102

    Hi!

    • @AlgyCuber
      @AlgyCuber 6 років тому +3

      hi ooon hann

    • @blackpenredpen
      @blackpenredpen  6 років тому +6

      Oon Han
      I see factoreo!

    • @OonHan
      @OonHan 6 років тому +2

      lol pinned

    • @AlgyCuber
      @AlgyCuber 6 років тому +1

      H times i factoreo where H is e

    • @OonHan
      @OonHan 6 років тому +1

      lol

  • @joetucker971
    @joetucker971 6 років тому +46

    Literally never been more impressed with any maths video on UA-cam this is so well explained and clear and clever

  • @michaelwpannekoek
    @michaelwpannekoek 6 років тому +27

    Yet another video demonstrating the beauty of calculus. Love it.

  • @golammartuzahossain6748
    @golammartuzahossain6748 6 років тому +14

    Thanks so much.I had to integrate the conjugate of this but couldn't do it until today.It really was amazing!!!

  • @michaelgutierrez7220
    @michaelgutierrez7220 6 років тому +4

    Every time I watch you do integrations my mind is just blown by the brilliance of how it works the first try every time!

  • @SteamPunkLV
    @SteamPunkLV 6 років тому +13

    this is awesome :D and thanks for doing the trig sub part instead of saying "and from there on it's easy" :P

    • @blackpenredpen
      @blackpenredpen  6 років тому +4

      Yayyyy!

    • @leif1075
      @leif1075 4 роки тому +1

      @@blackpenredpen PLEASE respond..didnt you first think to replace sinxcosx by the double angle sine formula sin2x divided by 2 and replace the top by square root of cos2x..seems more logical and intuitive than what yiu did..inwould think a lot of people did that.this is why math is so damn infuriating and ridiculous so much..

  • @thephysicistcuber175
    @thephysicistcuber175 6 років тому +67

    so you turned a trig integral into algebrical integral and then back to trig to finally solve it.
    dafuq?

    • @blackpenredpen
      @blackpenredpen  6 років тому +14

      Exactly! Told you it's a clickbait already.

    • @holyshit922
      @holyshit922 6 років тому

      Solve my exercise with bisector to get u sub which allows you to avoid inverse trig substitution
      i63.tinypic.com/rkvnkg.png
      In triangle ABG length of two sides are given
      Angle BAG is labelled as theta
      GL is bisector of angle complementary to theta
      Express the ratio GB/BL in terms of given length of sides

    • @seroujghazarian6343
      @seroujghazarian6343 6 років тому

      Well here's what I call it:The joyride effect.

  • @renegado2630
    @renegado2630 6 років тому +2

    Is there anything this channel doesn´t have? Thank god i found it! please never stop making videos

  • @Jeff-wc5ho
    @Jeff-wc5ho 6 років тому +2

    I was once given this exact problem, but with bounds on the integral. I exploited the symmetry of the bounds because I figured there was no elementary antiderivative. Fascinating video!

  • @soumyachandrakar9100
    @soumyachandrakar9100 6 років тому +2

    This is what I was waiting for!!!!!.... Thanks BPRP

  • @lyceemylaps7791
    @lyceemylaps7791 3 роки тому +1

    Hey man, thanks for this video. And this is actually an iit jee classic. Your solution helped me solve a problem related to this format.

  • @HasanAli-en7wi
    @HasanAli-en7wi Рік тому +1

    6:41. That's not tricky. I don't know why foreigners ( I'm indian) teach this integral separately. We have direct formula for integrals of the form x²-a²,a²-x²,root x²-a²,root a²-x², 1/x²-a² ,1/a²-x², 1/root x²-a², 1/root a²-x². We have direct formulas for these in the NCERT textbook. 😄

  • @LANCRO1
    @LANCRO1 6 років тому +2

    Great video, greetings from Colombia!!

  • @Vidrinskas
    @Vidrinskas 6 років тому +5

    Surely you can quote integral of 1/sqrt(u^2 -1) = arcosh(u) ? So the answer can be written as sqrt(2)arcosh(cosx + sinx) +C.

  • @cupass6179
    @cupass6179 6 років тому +3

    "clickbait" lmao I love this so much

  • @guilhermeneryrocha4056
    @guilhermeneryrocha4056 6 років тому +4

    I really liked this video but please don't stop the combinatory videos. They break the constant integral videos on your channel pretty nicely

    • @blackpenredpen
      @blackpenredpen  6 років тому +3

      Yayyy. I try to change flavors ones in a while. Glad that you like it!!!

  • @evreng
    @evreng 6 років тому

    As always, that's another great video!

  • @Chasejh1999
    @Chasejh1999 6 років тому +2

    Thanks for another great video!

  • @sardarbekomurbekov1030
    @sardarbekomurbekov1030 6 років тому +15

    x, u and theta world

  • @JustinsRealmMC
    @JustinsRealmMC 6 років тому +1

    Nice. Now split the problem and integrate them term by term

    • @blackpenredpen
      @blackpenredpen  6 років тому

      I did that already, even the crbt(tan(x))

  • @zacariassand2285
    @zacariassand2285 5 років тому

    I really enjoy watching your videos... congratulations

  • @derdotte
    @derdotte 6 років тому +6

    nice integral! blackpenredpen would you try solving the integral from -1 to 1 of x^2/(e^(x)+1)?

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      Wow, the answer to that is just 1/3, so clean. (thanks to WFA tho), I will think about the steps when I have time.

    • @derdotte
      @derdotte 6 років тому

      yes, such an unexpected answer. Whenever you have time :)

  • @karstenmeinders4844
    @karstenmeinders4844 6 років тому

    No clickbait, but a solid BPRP Performance as always!

  • @aakashkhamaru9403
    @aakashkhamaru9403 3 роки тому

    You could also convert cotx to 1/tanx and then proceed further.

  • @japotillor
    @japotillor 6 років тому +5

    Would it not have been easier to solve the equation in the note for sin x cos x and substitute it back into the integral so one doesnt have to add and subtract the 1?. ;)...also cute kitten.

    • @blackpenredpen
      @blackpenredpen  6 років тому +4

      hmmm, I think it's about the same. And thank you!! : )

  • @jameswilson8270
    @jameswilson8270 6 років тому +1

    Very cool! Thanks for sharing!

  • @StephenMarkTurner
    @StephenMarkTurner 6 років тому

    I watched the Chinese version, I still understood it though. :-) Well 'explained'. Those substitutions are really smart.

  • @Grundini91
    @Grundini91 6 років тому

    If, at 1:30 you had left the numerator as sqrt((cos x)^2 - (sin x)^2), couldn't you have then converted that sqrt(cos 2x)? Which would then allow you to convert the denominator into sqrt ( 1/2 sin 2x). Bringing that back into a single square root that would have given sqrt( (cos2x)/(1 /2 sin 2x) ), which equals sqrt (2 cot 2x). Wouldn't it have been easier to solve that way?

    • @driksarkar6675
      @driksarkar6675 3 місяці тому

      This is a very late reply, but remember, sqrt((cos(x))^2)-sqrt((sin(x))^2) is not the sqrt((cos(x))^2-(sin(x))^2).

  • @dugong369
    @dugong369 5 років тому

    8:45 "we are ready to integrate"

  • @gregoriousmaths266
    @gregoriousmaths266 4 роки тому +1

    Yesssss the fematika shoutout!!

  • @최문규-o4d
    @최문규-o4d 5 років тому

    We can solve it by arctanhx function
    Let sqrt tanx = u
    So that integral can be 2^0.5 arctanh((sqrt tanhx + sqrt cothx)/2^0.5)
    This approach is like the way of integration of sqrt tanx

  • @saidhelal5866
    @saidhelal5866 6 років тому

    when you put u=√(tan(x))
    you'll get the integral is equal to
    √(0.5)ln([tan(x)+√(2tan(x))+1]/[tan(x)-√(2tan(x))+1])+C

  • @joshuamason2227
    @joshuamason2227 5 років тому

    holy shit this is such a good quality video

  • @holyshit922
    @holyshit922 4 роки тому

    cotx =1/tanx and use substitution u^2=tanx

  • @Sid-ix5qr
    @Sid-ix5qr 6 років тому +8

    I'm actually disappointed about the fact that Fematika really has less subscribers.

    • @Fematika
      @Fematika 6 років тому +4

      Thank you so much for the compliment!

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      He definitely deserves more! : )

    • @gregoriousmaths266
      @gregoriousmaths266 4 роки тому

      Yep definitely the most underrated UA-cam channel

  • @mil9102
    @mil9102 6 років тому

    You could have used standard result that integral 1/(x^2 - 1) dx = arccosh(x) + C
    And arccosh(x) = ln(x + sqrt(x^2 - 1))

  • @mcNakno
    @mcNakno 3 роки тому

    I tried this integral by PI and using the DI method for help. I gave up after 15 minutes because the number of integrals kept increasing lol.

  • @srpenguinbr
    @srpenguinbr 6 років тому +1

    I used u=sinh(theta) and got arctanh(sin(x)+cos(x))*sqrt(2)

  • @hachemimokrane8013
    @hachemimokrane8013 3 роки тому

    Very nice sir!!!

  • @aslankhairashov6748
    @aslankhairashov6748 6 років тому +1

    blackpenredpen, Hey, man extremely stunning approach of solution, I wonder how you easily launch your pure math imagiation and miracle creativity.Are you math professor of University or just olympiad winner student? I love your way of solution. Unfortunately, I can't put double thumb-up sign above your video, wish you further promotion as a blogger.

  • @himanshumallick2269
    @himanshumallick2269 6 років тому +3

    Won't it be sqrt(2)(inverse cosh(sinx + cosx)?

  • @AngrySaxon1080p
    @AngrySaxon1080p 6 років тому +2

    so good!

  • @carlosfox8201
    @carlosfox8201 6 років тому

    dear master... thank you!

  • @kwstasfragkakis9721
    @kwstasfragkakis9721 6 років тому

    Beautiful!!

  • @jameshenner5831
    @jameshenner5831 4 роки тому

    I may have found an error. I used Desmos to set f(x)= sqrt(2)*ln(abs(sinx+cosx+sqrt(sin2x))). Then I plotted f'(x). Then I plotted sqrt(cotx)-sqrt(tanx). But these functions don't line up. In a way, there may be a negative. See image of desmos screen here: i.imgur.com/y5FAEpK.jpg

    • @nahblue
      @nahblue 3 роки тому

      I looked into this too, but I don't see it! They look identical to me when I graph the difference between the two (one solution sub the other). I can't get the computer algebra systems to integrate this integral to anything easy or anything that will simplify down, but that can just be down to how it is complicated to simplify. Numerically it seems correct.

  • @BRUBRUETNONO
    @BRUBRUETNONO 6 років тому +1

    And now ... you can make integral of sqrt(cot(x))+sqrt(tan(x)) ... and get by adding and substracting the both famous integrals of sqrt(cot(x)) and sqrt(tan(x))
    ... and Voilà ... isn't it !

  • @Drestanto
    @Drestanto 6 років тому

    I still don't understand why we can just forget about the absolute value??
    Because I think that y = sqrt(cot(x)) - sqrt(tan(x)) *is different with* y = (cos(x) - sin(x))/sqrt(sin(x)cos(x)), and it will produce a different integral

    • @iabervon
      @iabervon 6 років тому +2

      To do it completely right, you need to determine the range where the integrand is integrable, after which you can skip the absolute values if their arguments are always positive in the valid range. In the valid range near 0, sin x and cos x are both positive, for example.

  • @lg3rm553
    @lg3rm553 6 років тому +3

    CLICKBAIT has to get a like^^ (like all other videos anyway)

  • @jack-jt2lm
    @jack-jt2lm 5 років тому

    so beautiful

  • @ZipplyZane
    @ZipplyZane 6 років тому

    Aw someone who never took Integral calculus, is the trick that it would have been easier doing it the other way? Was the double substitution unnecessary?

  • @MrJasiekGuitar
    @MrJasiekGuitar 6 років тому

    Now you should try to integrate cbrt(cot(x) )-cbrt(tan(x)) dx

  • @tharjun9447
    @tharjun9447 3 роки тому

    Nice bro!

  • @sunijshah3914
    @sunijshah3914 6 років тому +1

    Can u plz solve this.....|x| + |y| + |x+y| less than equal to 2...find the area of the region in xy plane which satisfies this inequality...

  • @sergioh5515
    @sergioh5515 6 років тому +2

    AWESOME!

  • @ianmoseley9910
    @ianmoseley9910 4 роки тому

    I got as far as deciding the original was the same as sqrt(cot(x) + tan(x) - 2) but then gave up.

  • @ibraheemalani3584
    @ibraheemalani3584 6 років тому

    Why didn't you draw a box when you have finished the solution

  • @pporr
    @pporr 4 роки тому

    Why not simplly mutiply and divide by sqrt(tan(x)) and usub rt(tan(x))

  • @manceaugael7960
    @manceaugael7960 6 років тому

    Please help me, I am in the limited developments and I know that the inverse of a sum isn't the sum of the inverse. But I wonder what is the inverse of a sum? Especially what is the inverse of 1+x^2/2!+x^4/4!+x^6/6!+...?

    • @manceaugael7960
      @manceaugael7960 6 років тому

      yes but what I really searched is the limited development of sech(x). I wonder if you can find this development just by doing the inverse of the one of the cosh(x), but that's not easy.

  • @blogspoto
    @blogspoto 6 років тому

    yo,i have a question for you regarding the integration of (1/(x^2-1))dx;in that manner,can't we think (-1) as being i^2(if we integrate in a complex plane),and the bottom becomes x^2+i^2,so we use the formula for arctan,and thus getting (1/i)*arctan(x/i) +c , is that a valid answer?

    • @Drestanto
      @Drestanto 6 років тому +1

      Yes, that's a valid answer in a complex world (complex number system), but not in a real world.
      Because actually, when x is a real number, the i will be cancelled out. That's why it's not actually necessary to use "i" in the equation.
      For me, I like to solve it using hyperbolic trigonometry substitution giving :
      integral of (1/(x^2-1))dx = -arctanh(x) + C
      No imaginary number needed :)

    • @blogspoto
      @blogspoto 6 років тому

      I know that answer aswell,but i wondered if that would work,because it got stuck in my head during one class and i havent found anything related to that on the internet;thank you for your answer ;)

    • @Drestanto
      @Drestanto 6 років тому

      You're welcome

  • @digantamajumder5900
    @digantamajumder5900 5 років тому

    I have a different answers. I have seen even another answer in a book. What's going on?

  • @neelkadam2923
    @neelkadam2923 4 роки тому

    This question is from which book ?

  • @vipulsharma323
    @vipulsharma323 5 років тому

    Hi! Can I use this trick for Integral of sqrt(cot(x))+sqrt(tan(x))? Please do let me know.

  • @venumadhav1286
    @venumadhav1286 6 років тому +1

    Halo...Nice entry..

  • @matlucero5269
    @matlucero5269 6 років тому

    i never clicked faster!

  • @alanturingtesla
    @alanturingtesla 6 років тому +2

    Really interesting, thanks!

  • @spugna98
    @spugna98 6 років тому

    I tried to plot the graphs of sqrt(cot(x)) - sqrt(tan(x)) and of (cos(x) - sin(x)) /sqrt(sin(x) cos(x)), but they are different. Why this happend becouse I don't see any error in transforming the first expression in the second one. Someone help me

    • @dreadk5594
      @dreadk5594 6 років тому +1

      They are indeed slightly different. Probably has to do with the fact that you are "cheating" out of the square root in the numerator so those negative values for sinx and cos are gone. Try putting in |cosx|-|sinx|/(sqrt(sinxcosx). Then you should get the original function. In these integral problems very often we get rid of the absolute value since it simplifies problems and doesn't affect the result in the end too much.

  • @diegotejada55
    @diegotejada55 6 років тому +17

    Why exactly is this clickbait again?

    • @blackpenredpen
      @blackpenredpen  6 років тому +10

      Diego Tejada as long as click on it, it's a clickbait

    • @diegotejada55
      @diegotejada55 6 років тому +5

      Those are wise words. I'd like to start a petition to start every single title with "CLICKBAIT" except on April 1st, because it's a holiday

    • @blackpenredpen
      @blackpenredpen  6 років тому +3

      I will see what I can do. : )

  • @calyodelphi124
    @calyodelphi124 6 років тому

    Omg bprp you farging troll XD
    I was expecting clickbait, I got clickbait. Bravo, good sir.

  • @MathForLife
    @MathForLife 6 років тому +1

    Nice integral! Where are you finding these integrals?

  • @Dharmarajan-ct5ld
    @Dharmarajan-ct5ld 3 роки тому

    You failed to use this in finding integral √tan x,

  • @sadracmoreno7160
    @sadracmoreno7160 6 років тому

    Make a pdf compilation of cool integrals and leave it in the description. uwu

  • @Ni999
    @Ni999 5 років тому

    Btw, you already knew from previous steps that
    tanθ = √(u²-1)
    And that
    √(u²-1) = √(2sinθcosθ)
    😉🙂

  • @SSSS2k25
    @SSSS2k25 6 років тому

    Sir..5th step is direct formula

    • @blackpenredpen
      @blackpenredpen  6 років тому

      Good.

    • @SSSS2k25
      @SSSS2k25 6 років тому

      R u attention to me ....ohhh thanks sir 😚😚

  • @chiragagarwal9227
    @chiragagarwal9227 5 років тому

    The twist is that its actually just a NCERT example from class 12th 🤣

    • @cheesywiz9443
      @cheesywiz9443 5 років тому +1

      so whats the difference between NCERT and JEE?
      Is JEE a special exam of some sort that people have to take to get into IIT?

  • @MrAjeet-uc5xk
    @MrAjeet-uc5xk 6 років тому

    Thanks sir

  • @AndDiracisHisProphet
    @AndDiracisHisProphet 6 років тому +1

    oh, I get it...

  • @robertherbert8419
    @robertherbert8419 5 років тому

    ....sneeky solution, but smart !

  • @homeallinone1795
    @homeallinone1795 4 роки тому

    thanks

  • @ciscoortega9789
    @ciscoortega9789 6 років тому +1

    Hi, I was just wondering,
    How can you just say that sqrt(cos^2(x)) = cos(x)? Isn't that |cos(x)|?

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      It is! But we ignore that for a second for integration purpose.

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      when it's just an indefinite integral

    • @ciscoortega9789
      @ciscoortega9789 6 років тому +1

      I see, thank you!

  • @amjadal_asadi3778
    @amjadal_asadi3778 6 років тому

    Bravoooo😚

  • @duncanw9901
    @duncanw9901 6 років тому +1

    jus use integral linearity? Wut?

  • @gabob6992
    @gabob6992 6 років тому

    What is sqrt(sqrt(e^e))

  • @timurpryadilin8830
    @timurpryadilin8830 6 років тому

    Mistake in line 3. There should be modules. Cos and sin can be negative. Am I right?

  • @araizkhan
    @araizkhan Рік тому

    Nice

  • @huascochoqueabelroger7364
    @huascochoqueabelroger7364 6 років тому +1

    Where is oreo? :"v

    • @blackpenredpen
      @blackpenredpen  6 років тому +1

      He will be up in the other videos later : )
      He is also Caro's cat.

  • @user-vm6qx2tu3j
    @user-vm6qx2tu3j 6 років тому +2

    Yayyyyy!!

  • @ssdd9911
    @ssdd9911 6 років тому +1

    1,400 views 140:0 like:dislike ratio

  • @carljosephpenuliar3876
    @carljosephpenuliar3876 4 роки тому

    Please make a video of checking of its derivative if it is the same from the original question. Thank you

  • @alwysrite
    @alwysrite 6 років тому +2

    hard one

  • @not_vinkami
    @not_vinkami 5 років тому

    It's time for you to integrate them separately, and then simplify it, so that your video can be longer XD

  • @anilsharma-ev2my
    @anilsharma-ev2my 4 роки тому

    How we show this equation physically?
    How triangle change according to this equation ?

  • @deepanshkalra6788
    @deepanshkalra6788 4 роки тому

    Simple

  • @retired5548
    @retired5548 6 років тому +1

    NUUU, CLIKBAITUUUUU!!! :)))

  • @77Chester77
    @77Chester77 6 років тому +1

    Very cool! More Clickbait :-)

  • @olafbraakman4118
    @olafbraakman4118 6 років тому +1

    Integral clickbait, wew!

  • @Wu-Li
    @Wu-Li 3 роки тому

    int of √tanx dx
    tanx=u²
    2udu=sec²xdx
    dx=2udu/(u²-1)
    again,
    int of √tanx dx
    = int of u×2udu/(u²-1)
    = 2[int of u²du/(u²-1)]
    =2[int of (u²-1+1)du/(u²-1)]
    =2[int of du + int of du/(u²-1)]
    =2[u+int of du/(u²-1)]
    =2[u+½log|(u-1)/(u+1)|] +k
    =2u+log|(u-1)/(u+1) +k
    =2√tanx + log|(√tanx -1)/(√tanx +1)| +k
    Therefore,
    Int of √tanx dx = 2√tanx + log|(√tanx -1)/(tanx +1)| +k

  • @eulerianorder6972
    @eulerianorder6972 6 років тому +1

    Brpr caan you answer your email

  • @Filip-pd5zc
    @Filip-pd5zc 6 років тому +1

    😶

  • @karinano1stan
    @karinano1stan 6 років тому

    oh shet

  • @awawpogi3036
    @awawpogi3036 6 років тому

    Its nice that you put clickbait on title. Great ;)