Yo empecé este año a hacer cursar esta carrera en la UBA y aunque todavía estoy en el CBC, no puedo creer lo bien que hice al elegir esta carrera... Con cada cosa que leo, veo o aprendo me maravillo cada vez más. Y le estoy poniendo todas las ganas a Álgebra😁. Excelente vídeo. Gracias.
Gracias Luigi, te has convertido en mi mentor, pues estoy solo en esto y es un mundo completamente nuevo, alucinante -y a veces atemorizante- para mí. Yo soy profesor de inglés aficionado a la programación, las matemáticas, las estadísticas y la ciencia y me surgió la posiblidad de cambiar de rubro.
Está muy bueno el video. Teniendo en cuenta que en el mundo de los negocios, y también en lo que respecta a Data Science, se manejan muchos anglicismos, como ser "approach" (acercamiento), "engagement" (compromiso), "Take Away's" (cosas para que te las lleves), "forecasting" (pronóstico), etc..., estaría buenísimo hacer un video sobre la mayoría de los anglicismos, y qué es lo que se quiere decir cuando se utiliza cada uno de éstos. Igualmente, estuve mirando y hay mucha info en internet. Pero un video sobre ese tema sería genial. 😁
Si, es muy importante, sobre todo estadistica ( que para mi es una rama de las matematicas) pero creer que basta con eso es estar muy lejos, es una condicion necesaria pero no suficiente
Lo bueno de ser bueno en mates es que ya estás acostumbrado a solucionar problemas complejos y eso en DS es clave. Porque a veces pierden más tiempo en encontrar la solución al problema y si lo hacen mal tienen que volver a empezar.
Muchísimas gracias por este video! Me has dejado más motivado a seguir mi camino hacía Data Scientist! Me encantan las mate y ahora tengo más razones para quererlas!! Excelente video!
Excelente contenido, muchas gracias. Como puntos de mejora, deberías mejorar la dicción y agregar los puntos que comentas como texto en el video, no sólo imágenes con tu voz.
Muchas gracias por el video, la verdad lo estaba buscando. Tengo una pregunta, qué conveniente o cuánto tiempo puede tardar uno en aprender todo o relacionado para ser científico de datos? Soy analista de datos pero tengo más de 40 y alguien me dijo que esto puede tomar casi 5 años y que ya a esas edad pues que no era tan fácil buscar empleo teniendo los conocimientos pero sin experiencia. Gracias
Primero comprender el comportamiento de los datos, para ello necesitas saber conceptos estadísticos e interpretación, luego de ello ya puedes meterte al Machine learning un área más matemático porque trabajas con IA y algoritmos junto a simulaciones
Buenas 🙋🏼♂️ Supuse que al mencionar Gradient Descent y Backpropagation se iba a entender que hablo de cálculo diferencial en cuanto derivadas y regla de la cadena, por eso lo había sacado de la edición, lo tendré en cuenta en próximos videos 🙌🏻 También es importante saber sobre qué es un mínimo local y uno global, porque en algunos casos ciertos algoritmos que no tienen una función de costo convexa, pueden converger en un mínimo local al correr GD. Podés solucionarlo con un mini-batch GD o stochastic GD que, por su naturaleza de ser estocásticos, tienen más posibilidad de escapar de un mínimo local. Para entender bien estos conceptos sí se necesita entender sobre mínimos (locales/globales), qué caracteriza a cada uno, derivadas. En el caso de backpropagation se añade el entender la regla de la cadena que juega un papel muy importante cuando se recalcula el peso de las neuronas en cada layer.
Yo empecé este año a hacer cursar esta carrera en la UBA y aunque todavía estoy en el CBC, no puedo creer lo bien que hice al elegir esta carrera... Con cada cosa que leo, veo o aprendo me maravillo cada vez más.
Y le estoy poniendo todas las ganas a Álgebra😁.
Excelente vídeo. Gracias.
Gracias Luigi, te has convertido en mi mentor, pues estoy solo en esto y es un mundo completamente nuevo, alucinante -y a veces atemorizante- para mí. Yo soy profesor de inglés aficionado a la programación, las matemáticas, las estadísticas y la ciencia y me surgió la posiblidad de cambiar de rubro.
Está muy bueno el video. Teniendo en cuenta que en el mundo de los negocios, y también en lo que respecta a Data Science, se manejan muchos anglicismos, como ser "approach" (acercamiento), "engagement" (compromiso), "Take Away's" (cosas para que te las lleves), "forecasting" (pronóstico), etc..., estaría buenísimo hacer un video sobre la mayoría de los anglicismos, y qué es lo que se quiere decir cuando se utiliza cada uno de éstos. Igualmente, estuve mirando y hay mucha info en internet. Pero un video sobre ese tema sería genial. 😁
Nueva suscriptora, me gusta la forma en que te comunicas. Gracias por el video, super útil para mi en este momento.
Si, es muy importante, sobre todo estadistica ( que para mi es una rama de las matematicas) pero creer que basta con eso es estar muy lejos, es una condicion necesaria pero no suficiente
Muchisimas gracias por el video Luigi
Mi placer! 🙌🏻📚
Lo bueno de ser bueno en mates es que ya estás acostumbrado a solucionar problemas complejos y eso en DS es clave. Porque a veces pierden más tiempo en encontrar la solución al problema y si lo hacen mal tienen que volver a empezar.
Muchísimas gracias por este video! Me has dejado más motivado a seguir mi camino hacía Data Scientist! Me encantan las mate y ahora tengo más razones para quererlas!! Excelente video!
Excelente vídeo!!
Muchas gracias, me alegra saber que resultó util! 🙌🏻
Excelente contenido, muchas gracias. Como puntos de mejora, deberías mejorar la dicción y agregar los puntos que comentas como texto en el video, no sólo imágenes con tu voz.
Muchas gracias por el video, la verdad lo estaba buscando. Tengo una pregunta, qué conveniente o cuánto tiempo puede tardar uno en aprender todo o relacionado para ser científico de datos? Soy analista de datos pero tengo más de 40 y alguien me dijo que esto puede tomar casi 5 años y que ya a esas edad pues que no era tan fácil buscar empleo teniendo los conocimientos pero sin experiencia. Gracias
Esta Informacion vale oro gracias Luigi ... nos podrias recomendar algun lugar para aprender estos conceptos matematicos ?
Libros.
Matemáticas: " calculo de tomas I y II"
Estadística:" estadística para administración y economía"
@@leandroespinoza7189 Gracias por compartir
Si eres de lo que aprende por vídeo te recomiendo Khan academy
Gracias hno
Gracias por la información!!!Hay algun curso que abarque todos estos temas?
También matemáticas para esto, como que mejor me voy con la guerrilla
Luiggi crees entonces que con una Tecnicatura en Data Science se puede lograr un buen enfoque?
De calculo vectorial verdad?
si osy malo en mate podria ?
hola, entiendo entonces que si quiero dedicarme a machine learning deberia estudiar data science primero no? , saludos gracias por tu video
Primero comprender el comportamiento de los datos, para ello necesitas saber conceptos estadísticos e interpretación, luego de ello ya puedes meterte al Machine learning un área más matemático porque trabajas con IA y algoritmos junto a simulaciones
No detallaste los temas de calculo como lo hiciste con Algebra y el de estadistica.
Buenas 🙋🏼♂️ Supuse que al mencionar Gradient Descent y Backpropagation se iba a entender que hablo de cálculo diferencial en cuanto derivadas y regla de la cadena, por eso lo había sacado de la edición, lo tendré en cuenta en próximos videos 🙌🏻
También es importante saber sobre qué es un mínimo local y uno global, porque en algunos casos ciertos algoritmos que no tienen una función de costo convexa, pueden converger en un mínimo local al correr GD. Podés solucionarlo con un mini-batch GD o stochastic GD que, por su naturaleza de ser estocásticos, tienen más posibilidad de escapar de un mínimo local.
Para entender bien estos conceptos sí se necesita entender sobre mínimos (locales/globales), qué caracteriza a cada uno, derivadas. En el caso de backpropagation se añade el entender la regla de la cadena que juega un papel muy importante cuando se recalcula el peso de las neuronas en cada layer.
👍
goodd
Excelente Luigi, mucha gracias