Word Embeddings, Word2Vec And CBOW Indepth Intuition And Working- Part 1 | NLP For Machine Learning

Поділитися
Вставка
  • Опубліковано 9 лют 2025

КОМЕНТАРІ • 46

  • @parmoksha
    @parmoksha 7 місяців тому +3

    this is first time i actually understood how embeddings are generated using word2vec. In most other tutorial on word2vec this exact thing was missing

  • @bhesht
    @bhesht Рік тому

    Excellent series, wonderfully explained mechanisms - you won't see this elsewhere. Thank you!

  • @aszanisani
    @aszanisani 2 роки тому +2

    i love your explanation, can't wait to the next part🤩

  • @raviv1752
    @raviv1752 2 роки тому

    Thank You Krish for wonderfull explaination

  • @amiralikhatib4843
    @amiralikhatib4843 2 роки тому +1

    I can't wait for the next part which the SkipGram approach will be discussed

  • @devkumaracharyaiitbombay5341
    @devkumaracharyaiitbombay5341 2 місяці тому

    45:07 sir it is not window size which represent output vector dimension
    otherwise then why vector parameter is 100 by default and window size present as two separate parameter when you train word2vec model from gensim lib.

  • @rachakondaeshwar4129
    @rachakondaeshwar4129 4 місяці тому

    Great video

  • @nandansadiwala4113
    @nandansadiwala4113 8 місяців тому

    The videos are very helping for me. Thanks Krish. Waiting For Some More Adv. Conceptual Videos Related to Deep Learning.

  • @TheBillionaire-sr
    @TheBillionaire-sr 7 днів тому

    If embeddings of two words have a cosine distance of close to 1, it implies high similarity or synonymy (depending on model training).

  • @apoorva3635
    @apoorva3635 Рік тому

    41:49 - What is the point of initializing weights when all the 0s (which are n-1 in number) multiplied with any number will anyways remain the same?

  • @luffyd9724
    @luffyd9724 2 роки тому +2

    Sir in Hindi batch there are 5 video already uploaded but in english batch there is only one video .why this difference are there ??

  • @rafsankabir9152
    @rafsankabir9152 10 місяців тому

    Amazing!!!!

  • @apurvaxyz
    @apurvaxyz 2 роки тому +2

    Please teach in FSDS May batch also

  • @farbodzamani7248
    @farbodzamani7248 Рік тому

    thanks a lot

  • @shriramdhamdhere7030
    @shriramdhamdhere7030 Рік тому +2

    you said that window size defines the length of vector to which a word is transformed but in the next video while training you had a window size of
    5 but got a vector of 100 dimension ?? pls clarify

  • @HarshPatel-iy5qe
    @HarshPatel-iy5qe 9 місяців тому +1

    why does number of hidden neuron should equal to window size , it can be anything , right? our window size decides the inputs words neuron layer which is window size-1.
    Correct me if i am wrong

    • @mehdi9771
      @mehdi9771 5 місяців тому

      you are correct , there is no error in your explanation. one note in window size is it is
      a hyperparameter that can be fine tuned based on results.

    • @shudhanshushrotriya6931
      @shudhanshushrotriya6931 4 місяці тому

      As for the hidden layer size, it also is a hyperparameter. Even in the paper Google published, they used 5 as a typical window size. And for the feature they experimented with embedding sizes of 100 to 1000 dimensions.

  • @AI-Brain-or-Mind
    @AI-Brain-or-Mind 2 роки тому

    grate sir
    i leaned so much thing from your videos thanks lot sir
    sir can you show us where to to download pretrained model of word2vec

  • @mudumbypraveen3308
    @mudumbypraveen3308 Рік тому +1

    I think towards the end the explanation of window size is wrong. if you multiply (7x5 )* (5x7) you output is basically a 7x7 matrix. so for each vocab word you have one vector of size 1x7 representing it. Also I believe window size does not mean feature vector it just means that how many words you are sampling before and after the context word. It is ultimately the final layer output dimensions which would have the embeddings. For e.g. last hidden layer is of size (7x512) you would get (7x7) * (7*512) which would give you embeddings of 7x512.

    • @BenASabu
      @BenASabu Рік тому

      I am not sure , but i think its not a matrix multiplication , if its analogus to matrix multiplication then what you said seems to be correct,

    • @mudumbypraveen3308
      @mudumbypraveen3308 Рік тому

      @@BenASabu it is always matrix multiplications in deep learning unlike classical ML algos.

    • @BenASabu
      @BenASabu Рік тому

      @@mudumbypraveen3308 bro could you please explain me how the initial 7*5 matrix come for each input word and , like how does the machine is able to attain the concept of feature representation in training

    • @abhisheksharmac3p0
      @abhisheksharmac3p0 7 місяців тому

      yup even i didnt understood the last segment, it became hotch potch

  • @ameybikram5781
    @ameybikram5781 Рік тому

    the same word can be present in differnt sentences !! so we calc the vector for thtat word in every sentence and take the averge?????

  • @wenzhang5879
    @wenzhang5879 11 місяців тому

    is the number of hidden neurons equal to the window size?

  • @khaderather
    @khaderather 2 роки тому

    Hope your Dubai tour was good.

  • @venkyramakrishnan5712
    @venkyramakrishnan5712 7 місяців тому

    Like your videos and earnest style of speaking, But I was confused about king - man + queen = woman
    Logically this seems more correct ?
    King - man + woman = queen ?

  • @a.chitrranshi
    @a.chitrranshi 2 роки тому

    Is this the first video lecture on nlp

    • @raviv1752
      @raviv1752 2 роки тому

      ua-cam.com/play/PLZoTAELRMXVNNrHSKv36Lr3_156yCo6Nn.html

    • @apurvaxyz
      @apurvaxyz 2 роки тому

      No

    • @a.chitrranshi
      @a.chitrranshi 2 роки тому

      @@apurvaxyz do you have the entire nlp link by any chance

    • @everythingprohd1270
      @everythingprohd1270 2 роки тому

      @@a.chitrranshi
      Here's the playlist ua-cam.com/play/PLZoTAELRMXVMdJ5sqbCK2LiM0HhQVWNzm.html

  • @dineshshelke631
    @dineshshelke631 2 роки тому +1

    Sir FSDS Batch mai bhi padhao please

  • @cricjack9076
    @cricjack9076 2 роки тому

    Hello sir please reply every video I put a comment about data science course but you don't reply?

  • @swagatsanketpriyadarsan6231
    @swagatsanketpriyadarsan6231 2 роки тому

    Can you please put out videos for computer vision. DL_CV

  • @encianhoratiu5301
    @encianhoratiu5301 8 місяців тому

    Window size doesn't give the embedding dimension.

  • @abhisheksharmac3p0
    @abhisheksharmac3p0 7 місяців тому

    last portion was confusing

  • @CARevanthkumar
    @CARevanthkumar 2 роки тому

    i want ML models more efficiency that project link

  • @frankstern5270
    @frankstern5270 2 місяці тому

    This is not a good content to learn word2vec. His conception is not clear

  • @naveenkuruvinshetti6610
    @naveenkuruvinshetti6610 Рік тому

    Too many ada

  • @prateekcaire4193
    @prateekcaire4193 Рік тому +5

    wrong in many ways. window size and feature dimensions need not same. word2Vec is 2 layered NN. here only one layer is shown. Overall poorly explained

    • @KushalSharma
      @KushalSharma Рік тому +1

      I do agree brother! It is wrongly explained

  • @Umariqbal-kp1nz
    @Umariqbal-kp1nz 2 роки тому

    Deep learning road map