Instant NGP in 100 lines of PyTorch code | NeRF #13

Поділитися
Вставка
  • Опубліковано 23 гру 2024

КОМЕНТАРІ • 28

  • @juntaeklim4271
    @juntaeklim4271 19 днів тому +2

    I have never seen such a simple and fancy implementation of instant-ngp before. Great work!

  • @williamzhang7083
    @williamzhang7083 7 місяців тому +3

    Exactly what im looking for. Thanks friend! Make more of these

  • @dronaacharya2183
    @dronaacharya2183 7 місяців тому +1

    Here before this channel blows up ;
    Really nice works 🔥

  • @rohink-VR555
    @rohink-VR555 29 днів тому +1

    This tutor is great. I have a question about how many epochs you trained. because I run for 10 epocs even though I'm not getting better results as you kept in github. Could you please tell me?

    • @papersin100linesofcode
      @papersin100linesofcode  27 днів тому

      Hi @rohink-VR555, thank you for your nice comment, and question. I trained for one epoch (parameters in the main function). That was several months ago, but if I recall correctly, training more was sometimes harmful (overfitting).

    • @rohink-VR555
      @rohink-VR555 25 днів тому +1

      @@papersin100linesofcode thanks for response

  • @rajeshnagula8440
    @rajeshnagula8440 7 місяців тому +1

    Really great work!🎉
    Would love to see implementation of RL papers and foundational models.

  • @eigensmith8316
    @eigensmith8316 7 місяців тому +1

    hey can you please explain how can we render the images in 'novel_view' in to a 3D object. Does it require photogrammetry?

    • @papersin100linesofcode
      @papersin100linesofcode  7 місяців тому

      Thank you for your question.
      The learned NeRF representation is a 3D model of the object.
      The most commonly used approach to obtain another representation (e.g. mesh) is to do a 3D to 3D conversion using algorithms such as Marching Cubes.
      Another possible approach, more closely related to what you suggest, is to use the NeRF representation to generate more views -- and potentially depths -- so that they can be fed to an algorithm such as TSDF (truncated signed distance function) Fusion.

  • @francescofisica4691
    @francescofisica4691 11 днів тому +1

    It's possible that on my T4 it takes around 30 minutes per epoch? And not seconds as written in the paper?
    Anyway great work, really impressive

    • @papersin100linesofcode
      @papersin100linesofcode  11 днів тому

      Thank you! Yes, definitely possible. I focused on making a simple implementation rather than focusing on speed. Beyond the accelerations from custom CUDA kernels and tiny CUDA, this code could be improved by parallelising the loop that iterates over all resolution.

    • @francescofisica4691
      @francescofisica4691 10 днів тому +1

      @@papersin100linesofcode Thanks a lot for the responce. You are a really great and fantastic researcher. Thanks again

    • @papersin100linesofcode
      @papersin100linesofcode  10 днів тому

      Thank you so much

  • @anhtth2207
    @anhtth2207 7 місяців тому +1

    great tutorial. I am also wondering which theme you use in the video btw

    • @papersin100linesofcode
      @papersin100linesofcode  7 місяців тому

      Hi @anhtth2207, thank you for your question. Do you mean the sublime text theme? If yes, this is the default theme

  • @jeffreyeiyike2358
    @jeffreyeiyike2358 2 місяці тому

    How can generate dataset for custom dataset

  • @BenignVishal
    @BenignVishal 7 місяців тому +1

    great tutorial brother!

  • @billy.n2813
    @billy.n2813 7 місяців тому +1

    Thank you very much for this video.

  • @gautamvashishtha3923
    @gautamvashishtha3923 7 місяців тому +2

    Thank you so muchhh!!