Taylor Serisi Nedir? - (Can Ozan Oğuz)

Поділитися
Вставка
  • Опубліковано 11 лис 2024

КОМЕНТАРІ • 64

  • @sinasikarakulak8707
    @sinasikarakulak8707 4 роки тому +2

    Matematik anlatanların büyük çoğunluğu direk uygulanışı ile işe başlıyor bu da dinleyicinin konuyu hayatın ve matematiğin neresine konumlandıracağını farkedemeden bir metodik işlemler silsilesi seyretmesine sebep oluyor. Ve kaçınılmaz soru ile karşılaşıyoruz "bu benim ne işime yarayacak ki?". Sizin anlatımlarınıza bu soruya cevap vererek başlamanız dinleyicinin herşeyi yerli yerine oturarak takip etmesini sağlıyor. Tebrikler

  • @KOcheatreports
    @KOcheatreports 5 років тому +8

    1:55 uyuklarken izliyordum dedim ki; "ya zaman algım değişti ya da kafam gitti" :D

  • @hacerkayal1740
    @hacerkayal1740 5 років тому +3

    Ağzınıza sağlık can oğuz hocam. Yine döktürmüşsünüz :)

  • @huseyinbayr5072
    @huseyinbayr5072 5 років тому +3

    Şu anda bu konuya çalışıyordum tesadüfe bakın :)
    Konunu mantığını tam olarak kavrıyamamıştım bazı şeyler daha netleşti teşekürler .

    • @canozanoguz
      @canozanoguz 5 років тому

      Rica ederim. Tabi konuyla ilgili her şey yok videoda, siz çalışmaya devam edin :) İyi çalışmalar.

  • @mertkaaner8622
    @mertkaaner8622 5 років тому +4

    Çok güzel ve açık bir anlatım sağolun.

  • @adiladil3706
    @adiladil3706 3 роки тому +1

    Teşekkür ederim hocam.

  • @teomanyalcnkaya5072
    @teomanyalcnkaya5072 5 років тому +4

    Emeğinize sağlık hocam harika bir video olmuş!

  • @hancioglu0727
    @hancioglu0727 5 років тому +2

    mükemmelsiniz hocam ilham kaynağısınız

  • @servet_colakoglu
    @servet_colakoglu 4 роки тому +1

    Teşekkürler açıklayıcı bir anlatım olmuş

  • @Ali-wj5hh
    @Ali-wj5hh 5 років тому +3

    Bu kanalí iyi ki kesfetmisim

  • @TheMuhendistv
    @TheMuhendistv 5 років тому +6

    Fourier serisi ve dönüşümleri hakkında da bir video hazırlayabilir misiniz? İçerik çok güzel olmuş.

    • @canozanoguz
      @canozanoguz 5 років тому +4

      Çok iyi olurdu, ancak Fourier serileri konusundaki anlayışım o kadar derin değil, o yüzden önce biraz daha pişmem gerekiyor.

    • @TheMuhendistv
      @TheMuhendistv 5 років тому +2

      @@canozanoguz Hocam piştiyseniz bizi de pişirin.

    • @canozanoguz
      @canozanoguz 5 років тому +7

      @@TheMuhendistv Öncesine göre daha iyi pişmiş durumdayım, ama hala biraz vakit gerekiyor.

    • @Yusuf-cg2zv
      @Yusuf-cg2zv 4 роки тому

      Can Ozan Oğuz piştinizmi hocam❔

    • @imefe.
      @imefe. День тому

      ​@@canozanoguz hocam son durum nedir

  • @mehmetemiryilmaz101
    @mehmetemiryilmaz101 5 років тому +2

    Haluk Hocam doğum gününüz kutlu olsun!

  • @mehmetcaner3874
    @mehmetcaner3874 4 роки тому +6

    Hocam merhaba cebirin temel teoremine göre bir polinomun derecesi kadar kökü vardır bu teorem Taylor serisi ile çelismiyor mu? Mesela e^x , bu fonksiyonu sonsuza kadar giden bir polinom şeklinde yazabiliyorsak bu e^x in sonsuz tane kökü vardır anlamına mı gelir? Benim bildiğim kadarıyla e^x in , reel düzlemde de karmaşık düzlemde de kökü yok.

    • @canozanoguz
      @canozanoguz 4 роки тому +3

      Harika bir yorum! Öncelikle şunu ekleyeyim, cebirin temel teoremi karmaşık sayılar gibi cebirsel kapalı cisimlerde geçerli, örneğin x^2+1=0 denkleminin derecesi iki, ama reel sayılarda kökü yok. Ve cebirin temel teoremi derecesi sonlu olan polinomlar ile ilgili, oysa serilerin derecesi sonlu olmak zorunda değil. Dediğiniz gibi e^x=0'ın hiç çözümü yok, dolayısıyla Taylor serisinin de hiç kökü yok. Ama Taylor serisini bir yerde kesip n-inci Taylor polinomuna bakarsanız onun karmaşık sayılarda n tane kökü olmalı. Bu her n için geçerli, ama n sonsuza gidince ortada kök fln kalmıyor. Bu benim de çok ilginç bulduğum bir durum. e^x'in Taylor polinomlarının kök sayısı n arttıkça artıyor, ancak n sonsuza gidince ortada hiç kök kalmıyor. Bu polinomların kökleri n'ye göre nasıl değişiyor sorusu kesinlikle incelenmeyi hak ediyor.

    • @mathwithinmath2289
      @mathwithinmath2289 4 роки тому

      Video eksik ve hatalı olmasaydı bu soruyu sormanıza gerek kalmazdı.

    • @canozanoguz
      @canozanoguz 4 роки тому +2

      @@mathwithinmath2289 Her video eksik olmaya mahkum, eğer hatalı yeri belirtirseniz düzeltme notu eklemeye çalışırım

  • @Voyager602
    @Voyager602 5 років тому +1

    Güzel bir anlatım teşekkür ederim

  • @dogancangedik3085
    @dogancangedik3085 3 роки тому +2

    Şu yılda izleyen biri var mı? Yoksa tek ben mi kaldım matematik aşığı

  • @bekirdemirkran1424
    @bekirdemirkran1424 5 років тому +3

    Matematiği sevmenin sınırı yok 😊

  • @yusuftekin4255
    @yusuftekin4255 5 років тому +1

    Ozan hocam, size viyana' da iyi bakmislar:) taylor i hatirllattiginiz icin tesekkurler..

    • @canozanoguz
      @canozanoguz 5 років тому +5

      Soğuk kış aylarını rahat geçirmek için yağlandığım doğrudur :)

    • @canozanoguz
      @canozanoguz 5 років тому

      @mr tlkl Fermat'nin son teoreminin kolay bir ispatını bulduğunu iddia edenlerin ciddiye alınmaması gerektiğini düşünüyorum.

    • @canozanoguz
      @canozanoguz 5 років тому

      @EGO THE LİVİNG PLANET İspatınız üzerinde 7 yıl çalıştınız mı?

  • @serverkankotan
    @serverkankotan Рік тому

    Aydınlatıcı

  • @hasanh9393
    @hasanh9393 5 років тому +1

    Bir serinin 0. terimi yokken a0 i nasil hesaplayabiliyoruz? Yoksa a0 i hayali bir genel katsayi olarak mi dusunuyoruz ?

    • @canozanoguz
      @canozanoguz 5 років тому +1

      a0 serinin ilk terimi, sabit terim.

  • @maraqmatikxyz
    @maraqmatikxyz 5 років тому

    Çox faydali .. çox sağ olun ..

  • @tarikirmak
    @tarikirmak 3 роки тому

    x=1 durumunda tanımsız olmuyor mu? (8.45 dakika için)

    • @canozanoguz
      @canozanoguz 3 роки тому +1

      haklısınız, bir kaç saniye sonrasında ekrana bir düzeltme notu eklemiştim.

  • @Corpse.82
    @Corpse.82 5 років тому

    Dairenin alaninin ispatini yapabilir misiniz?

    • @canozanoguz
      @canozanoguz 5 років тому +2

      Ali hocanın çemberle ilgili bir videosunda var. Dairenin içine bir çokgen yerleştirip çokgeni üçgenlere bölün. Üçgenlerin toplam alanlarını yazıp limitini alın. Kolayca formül ortaya çıkacaktır.

  • @fatihrzacelik4737
    @fatihrzacelik4737 5 років тому

    Hocam çok güzel anlatmışsınız . Ben mi kaçırdım tam bilmiyorum ama seri şeklinde yazabilmek için şartlardan da bahsedebilir misiniz

    • @canozanoguz
      @canozanoguz 5 років тому

      Siz kaçırmadınız, fonksiyon üzerindeki koşullardan bahsetmedim. Matematiksel ya da teknik tanımları vermek yerine, Taylor Serileri'nin neye benzediğini, fikrin nereden geldiği ve nasıl hesaplanabileceği üzerinde durdum. Ama fark etmişsinizdir, hesaplamak için fonksiyonun bir noktada sonsuz defa türevini aldım. Yani fonksiyonun bir noktada sonsuz defa türevlenebilir olması gerekir. Bunu kullanarak f'in Taylor serisini yazabiliriz. f'in kendi Taylor serisine eşit olması için de, f ile n-inci Taylor polinomunun farkının, n sonsuza giderken sıfır olması gerekir.

    • @fatihrzacelik4737
      @fatihrzacelik4737 5 років тому

      Can Ozan Oğuz
      Teşekkürler. Yeni videoları merakla bekliyorum.

  • @sadiqsirinses8856
    @sadiqsirinses8856 5 років тому +2

    Nerheba Azerbaycandan selam

  • @CaYOyun
    @CaYOyun 5 років тому +1

    geogebra şeyini paylaşabilir misiniz ? teşekkürler ders için.

    • @canozanoguz
      @canozanoguz 5 років тому +1

      Geogebra neyini soruyorsunuz? Ben grafikleri sagemath programı ile çizdim, geogebra ile değil.

    • @CaYOyun
      @CaYOyun 5 років тому

      @@canozanoguz anladım teşekkürler.

  • @sadiqsirinses8856
    @sadiqsirinses8856 5 років тому

    Ocam ben mustafa ocamin kitabini nasil elde ede bilirim Azervaycanda

  • @bbb-th1vu
    @bbb-th1vu 4 роки тому

    kamera beni çıldırttı

  • @farfaraway1966
    @farfaraway1966 5 років тому

    Fonskiyon mu ?

  • @efeguleroglu
    @efeguleroglu 5 років тому

    Lineer cebir ne zaman gelir?

    • @canozanoguz
      @canozanoguz 5 років тому

      Bu hafta yeni videosu gelir diye düşünüyorum.

    • @efeguleroglu
      @efeguleroglu 5 років тому

      @@canozanoguz Teşekkürler.

  • @fdfdsss1843
    @fdfdsss1843 5 років тому +6

    Hocamizin capi gittikce artiyor :D

  • @belengaz3034
    @belengaz3034 3 роки тому +1

    6:11 f of x;))

  • @alperenylmaz4016
    @alperenylmaz4016 5 років тому

    Hocam lise müfredatı analitik konusu ne zaman gelecek

  • @Omer-cg3fn
    @Omer-cg3fn 5 років тому

    Haci saci nasi yaptin

    • @canozanoguz
      @canozanoguz 5 років тому +1

      Hiç karışmıyorsun, kendi kendisine uzayıp böyle oluyor.

    • @Omer-cg3fn
      @Omer-cg3fn 5 років тому

      Helal asajhakhsj

  • @ahmetcetinkaya38
    @ahmetcetinkaya38 5 років тому

    Her şey çok güzel de fonskiyon nedir yauv.

    • @canozanoguz
      @canozanoguz 5 років тому +2

      'Dönüşüm' kavramının matematiksel ifadesi. Bir varlık başka bir varlığa dönüşür, ilk haline x, son haline f(x) deriz. Yani f(x), x'in f isimli dönüşüm altında neye dönüştüğü. Tabi ki bir şey, sadece bir şeye dönüşebilir. Aynı anda iki şeye dönüşemez.
      Bu dönüşümleri de genelde bir kümenin elemanlarından diğer bir kümenin elemanlarına olan dönüşüm olarak görürüz. Yani fonksiyonlar bir kümeden başka bir kümeye gider.

    • @ahmetcetinkaya38
      @ahmetcetinkaya38 5 років тому

      @@canozanoguz kardeş bilmiyor değilim fonksiyona fonskiyon yazmalarına dedim :)