A Tricky Roots of Cubics Problem

Поділитися
Вставка
  • Опубліковано 1 жов 2024

КОМЕНТАРІ • 56

  • @italyball2166
    @italyball2166 3 місяці тому +54

    There's also a nice side result here: the sum of the squares is negative, hence two of the roots are complex and conjugated

    • @harry_dum7721
      @harry_dum7721 3 місяці тому +2

      Well the conjugate is a given since a polynomial cannot have a complex solution without it's conplex conjugate also being a solution.

    • @abbeleon
      @abbeleon 3 місяці тому

      ​@@harry_dum7721a polynomial can have non-real solutions that are not conjugate pairs if the coefficients are non-real

    • @Errenium
      @Errenium 3 місяці тому

      ​@@harry_dum7721a polynomial over the reals

  • @ivanerofeev1269
    @ivanerofeev1269 3 місяці тому +56

    Since α³=-2α-1, then α³+β³+γ³=-2(α+β+γ)-3=-3

    • @DrBarker
      @DrBarker  3 місяці тому +19

      Nice, this saves us a lot of effort!

    • @thatapollo7773
      @thatapollo7773 3 місяці тому +2

      Multiply by alpha^2 and you can do the same to obtain the 5th powers

    • @okohsamuel314
      @okohsamuel314 Місяць тому

      Exactly what I was about to say 👍

  • @wesleydeng71
    @wesleydeng71 3 місяці тому +39

    2:30, by the same token α^3+β^3+γ^3 = -2(α+β+γ)-3, which simplifies the calculation further.

    • @danielmilyutin9914
      @danielmilyutin9914 3 місяці тому

      Yeah. I also noticed that. From other hand, we got some identity as byproduct.

  • @gavintillman1884
    @gavintillman1884 3 місяці тому +10

    I’d do exactly what you did for alpha^2 + beta^2 + gamma^2 but there is a slicker approach for alpha^3 + beta^3 + gamma^3 using the original polynomial. alpha^3 = -2 alpha -1 and similarly for beta^3 and gamma^3 so the sum of those cubes is therefore -2(alpha + beta + gamma) -3 = -3.

  • @jeanf6295
    @jeanf6295 3 місяці тому +5

    You can define the recursive sequence relation :
    u(n+3)+2u(n+1)+u(n) = 0
    Sequences that verify this relation have a closed form of the form :
    u(n) = A a^n+B b^n + C c^n
    where a,b and c are the roots of x^3+2x+1
    (inject u(n) = x^n into the relation to see why)
    The specific sequence we are interested in is :
    u(n) = a^n + b^n + c^n (A=B=C=1)
    To compute u(n) using the recursive relation we need a set of three values :
    u(0) = 3
    u(1) = a+b+c = 0 (as you have shown)
    u(2) = a²+b²+c² = (a+b+c)²-2(ab+bc+ca)
    From there use u(n+3) = -2u(n+1)-u(n) and you can get all values of u(n) easily.

  • @erikr007
    @erikr007 3 місяці тому +7

    To find the sum of the n-powers of the roots, just divide the polynomial x^n by x^3+2x+1. The remainder will be a quadratic so it will express α^n in terms of 1, α and α^2. Hence you'll only have to compute α+β+γ and α^2+β^2+γ^2 for any power of n.

  • @honestadministrator
    @honestadministrator 3 місяці тому +1

    Another way
    x^3 + 2 x + 1 = 0
    implies alpha + beta + gamma = 0
    alpha * beta + beta * gamma
    + gamma * alpha = 2
    x^5 + 2 x^3 + x^2 = 0
    x^5 = 2 ( 2 x + 1) - x^2
    Hereby
    alpha ^5 + beta ^ 5 + gamma ^5
    =- alpha ^2 -beta ^ 2 - gamma ^5
    + 4 ( alpha + beta + gamma)
    + 6
    = - ( alpha + beta + gamma) ^2
    + 2 (alpha * beta + beta * gamma
    + gamma * alpha)
    +6
    = 2 * 2 + 6
    = 10

  • @MyOneFiftiethOfADollar
    @MyOneFiftiethOfADollar 3 місяці тому +2

    If you are masochistic try the multinomial expansion on (alpha + beta + gamma)^5
    The given cubic implies alpha + beta + gamma=0, (alpha*beta + alpha*gamma + beta*gamma)=2, alpha*beta*gamma=-1
    (These are called elementary symmetric polynomials in the roots that are expressible as coefficients(Vieta)
    Then use (alpha + beta + gamma)^5 = 0 and some tedious algebra/factoring on the expanded form right hand side.
    I did not work it all out, but it is probably about the same amount of effort as you presented in video.

  • @fahimuddin4401
    @fahimuddin4401 3 місяці тому +1

    Everyone has given really slick solutions for sum of cubes, here is my way😅 begin by noticing alpha+beta+gamma=0 thus the sum of the cubes of the roots will be 3(alpha) (beta) (gamma) = 3(-1) = -3

  • @alexlee6557
    @alexlee6557 3 місяці тому +5

    P = a + b + c; Q = ab + bc + ac; R = abc;
    a^5 + b^5 + c^5 = P^5 - 5(P^2 - Q)(PQ - R)

    • @HoSza1
      @HoSza1 3 місяці тому

      out of nowhere backwards derivation that shows none of the work you did, only the result...

    • @mephist43
      @mephist43 3 місяці тому

      @@HoSza1say that to Gauss and Ramanujan

    • @HoSza1
      @HoSza1 3 місяці тому

      ​@@mephist43Did you see any of them appear here? 😮

  • @johnstanley5692
    @johnstanley5692 3 місяці тому

    Easier? let d(x)=x^3+2*x+1=0 => x^5 = -x^2 +4*x+2 (i.e. remainder from x^5/d(x)). Given a+b+c =0 => a^5+b^5+c^5 = 6-(a^2+b^2+c^2).
    Now (a+b+c)^2=a^2+b^2+c^2+2*(a*b+a*c+b*c). now (a*b+a*c+b*c)=2 > a^5+b^5+c^5 = 6-(-4) = 10.

  • @easymathematik
    @easymathematik Місяць тому

    My favorite is using polynomial long division.
    Given a polynomial p(x) consider
    p‘(x)/p(x)
    You get
    Sum from i=0 to inf
    R(i) x^(-i-1)
    where R(i) is the sum of the roots to the power i of p(x).
    here we get
    3/x + 0/x^2 + -4/x^3 + -3/x^4 + 8/x^5 + 10/x^6 + …
    So
    R(0) = 3
    R(1) = 0
    R(2) = -4
    R(3) = -3
    R(4) = 8
    and finally
    R(5) = 10
    :)

  • @mathcanbeeasy
    @mathcanbeeasy 2 місяці тому

    a+b+c=0
    ab+ac+bc=2
    a^2+b^2+c^2=0^2-2*2=-4
    The sum of cubes is obvious from the equation.
    a^3+b^3+c^3=-2(a+b+c)-3=-3
    Then, multiplying the equation with x^2 we have
    a^5+b^5+c^5=-2*(a^3+b^3+c^3)-(a^2+b^2+c^2)=-2*(-3)-(-4)=6+4=10
    In fact, for any S_n=a^n+b^n+c^n we don't need the expansion of (a+b+c)^n. Every S_n can be obtained by recuration from the equation and Viette.

  • @spacer999
    @spacer999 3 місяці тому

    Rewrite the eqn as x^3 = -2x-1 to easily solve α^3+β^3+γ^3=-2(0)-3=-3 since α+β+γ=0
    Rewrite the eqn as x^2 = -2-(1/x) to easily solve α^2+β^2+γ^2=-6-(2/-1)=-4 since αβ+αγ+βγ=2 and αβγ=-1

  • @marcgriselhubert3915
    @marcgriselhubert3915 3 місяці тому

    Let's note a, b, c the 3 roots of the equation (I have no greek letters)
    As a^3 +2.a +1 = 0, we have a^3 = -2.a -1
    and a^5 = -2.a^3 -a^2 = -2.(-2.a -1) -a^2 = -a^2 +4.a +2
    Idem with b and C
    So, a^5 + b^5 + c^5 = -(a^2 + b^2 + c^2) +4.(a + b + c) +6
    Now a + b + c = 0 and a.b + a.c + b.c = 2 (symetric functions of the roots of the equation)
    So (a^2 + b^2 + c^2) =(a + b + c)^2 - 2.(a.b +a.c + b.c) =
    0^2 - 2.2 - -4
    Finally: (a^5 + b^5 + c^5) = - (-4) +4.0 + 6 = 10

  • @mufafafaexists6782
    @mufafafaexists6782 2 місяці тому

    an easier solution:
    x^3+2x+1=0
    by vieta's formula Σα = -b/a = 0
    S1 = 0 (where S1 is the sum of roots, S2 is the sum of the squares of the roots S3 is the sum of the cubes of the roots and so on)
    by considering each root and summing the 3 results together
    α^3+2α+1 = 0
    β^3+2β+1 = 0
    γ^3+2γ+1 = 0
    you get
    S3 + 2S1 + 3 = 0
    S3 + 2*0 + 3 = 0
    S3 = -3
    dividing the original equation by x results in
    x^2 + 2 + 1/x = 0
    rewriting for S
    S2 + 6 + S(-1) = 0 {note that S(-1) is the sum of the reciprocals of the roots}
    by vieta's again S(-1) = -c/d = -2
    solving for S2
    S2 + 6 - 2 = 0
    S2 = -4
    multiplying the original equation by x^2 results in
    x^5 + 2x^3 + x^2 = 0
    rewriting for S
    S5 + 2S3 + S2 = 0
    S5 +2*-3 + -4 = 0
    S5 = 6 + 4 = 10
    therefore α^5 + β^5 + γ^5 = 10

  • @misterguts
    @misterguts 2 місяці тому

    ChatGPT 4o solved this problem from the statement in the video description (slightly edited):
    "Given that α, β, γ are roots of the equation x^3 + 2x + 1 = 0, calculate α^5 + β^5 + γ^5."

  • @thiagoflaherty9992
    @thiagoflaherty9992 3 місяці тому

    Can You prove that
    √((100!×99!×98!.....4!×3!×2!)50!) is a integer?

  • @holyshit922
    @holyshit922 3 місяці тому +2

    Symmetric polynomials
    In fact we have special case called power sums
    Newton-Girard formulas then Vieta formulas should solve the problem
    To use Vieta formulas you must have elementary symmetric polynomials
    and Newton-Girard formulas allow to express power sums in terms of elementary symmetric polynomials

    • @ahoj7720
      @ahoj7720 3 місяці тому

      Symmetric polynomials and logarithmic derivatives (hence Newton-Girard formulas) are very powerful tools.

  • @wannabeactuary01
    @wannabeactuary01 3 місяці тому

    Let roots be a, b, c
    Noting abc = -1 , ab +bc+ ca = 2 , a + b+ c = 0,
    a^2 + b^2 + c^2 = (a+b+c)^2 - 2(ab + bc + ca) = -4
    And a^3 = -2a - 1
    ⇒ a^5 = (a^2)(-2a -1) = -2a^3 -a^2
    I) a^5 = -a^2 +4a + 2
    II) b^5 = -b^2 +4b + 2
    III) c^5 = -c^2 +4c + 2
    --------------------------------------
    Adding

    (a^5 + b^5 + c^5) = -(-4) + 4(0) + 6 = 10

  • @television-channel
    @television-channel 3 місяці тому +2

    that was kinda thrilling

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 3 місяці тому

    Let a, b, c be roots of x³+2x+1=0 Then: • a+b+c=0
    • ab+bc+ca=2
    • abc=-1
    Note that
    • 0=(a+b+c)²
    =a²+b²+c²+2(ab+bc+ca)
    =a²+b²+c²+2×2 --> a²+b²+c²=-4
    • 0=(a+b+c)³
    =a³+b³+c³+3(ab+bc+ca)(a+b+c)
    -3abc
    =a³+b³+c³+3 --> a³+b³+c³=-3
    • 12=(a³+b³+c³)(a²+b²+c²)
    =a⁵+b⁵+c⁵+a³b²+a³c²
    +b³a²+b³c²+a²c³+b²c³
    =a⁵+b⁵+c⁵+a²b²(a+b+c)-a²b²c
    +b²c²(b+c+a)-ab²c²
    +a²c²(c+a+b)-a²bc²
    =a⁵+b⁵+c⁵-a²b²c-ab²c²-a²bc²
    =a⁵+b⁵+c⁵-abc(ab+bc+ac)
    =a⁵+b⁵+c⁵+2
    Therefore a⁵+b⁵+c⁵=10

  • @shogun6943
    @shogun6943 3 місяці тому +1

    If a+b+c=0 then a³+b³+c³=3abc or in this case alpha beta and gamma(i couldnt find them in my keyboard)

    • @shogun6943
      @shogun6943 3 місяці тому

      It works for all numbers btw

  • @Khashayarissi-ob4yj
    @Khashayarissi-ob4yj 3 місяці тому

    With luck and more power to you.

  • @worldnotworld
    @worldnotworld 3 місяці тому

    Way too fast! I didn't even know it was over!

  • @PeterIvanov-w5i
    @PeterIvanov-w5i 3 місяці тому +1

    Perhaps the shortest solution is to calculate a2 + b2 + c2 by using Vieta’s formula (I replaced the roots with a b c and x2 means a square) and a3 + b3 + c3 by replacing the roots in the equation.
    Another interesting approach (because it starts from nowhere) is the following:
    Let’s define X= a4 + b4 + c4 and let’s multiply this equation by a+b+c (=0 by Vieta’s formula)
    0= a5 + b5 + c5 + a*(b4+c4) + b*(a4+c4) + c*(a4+b4); now by multiplying out and rearranging the summands we get
    (*) a5 + b5 + c5 = -ab*(a3+b3) - bc*(b3+c3) - ac*(a3+c3);
    Let’s transform any of the symmetric summands on the right by using the formula for the sum of cubs:
    ab*(a3+b3) = ab*(a+b)*(a2-ab+b2) = ab*(a+b)*((a+b)2 - 3ab)= {by using abc = -1 and a+b+c=0 we have ab= (-1)/c and (a+b)= (-c)}
    = c2 - 3ab
    Replacing these result in (*) we receive
    a5 + b5 + c5= -c2 + 3ab - a2 + 3bc - b2 + 3ac, by adding and subtracting 2ab + 2bc + 2ca and applying the formula for the sum of the squares we finally get
    a5 + b5 + c5= -(a + b + c)2 + 5(ab + bc + ca)= 0 + 5*2 = 10

    • @jursamaj
      @jursamaj 3 місяці тому

      Just a note for the future: standard text notation for powers is x^p, so x cubed is x^3.
      Or, if you have something that inserts unicode for you, superscripts are easy: x³. On Windows, the Character Map app is builtin, while on Mac, the 'keyboard and emoji viewer' menu does it.

  • @supasayajinsongoku4464
    @supasayajinsongoku4464 3 місяці тому +1

    This is the first youtube problem ive ever solved

  • @shacharh5470
    @shacharh5470 3 місяці тому

    I did it a different way.
    I started with something you did too:
    a+b+c=0
    ab+ac+bc=2
    abc=-1
    From the first equation c=-(a+b) (let's call this A)
    substitute that into the other equations you get:
    a^2b + ab^2 = 1 (B)
    and
    ab-(a+b)^2 = 2 (C)
    so using (A) and the binomial theorem, c^5 =-(a+b)^5 = -(a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5)
    so a^5 + b^5 + c^5 = -(5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4)
    = -5ab(a^3 + 2a^2b + 2a^b^2 + b^3)
    simplify this using (B) to = -5ab(a^3 + b^3 + 2)
    now use the binomial theorem again, but for the cube of sum:
    = -5ab((a+b)^3 -3(a^2b+ab^2) + 2)
    use (B) again: = -5ab((a+b)^3 -3 + 2) = -5ab((a+b)^3 -1)
    = 5(ab - ab(a+b)^3)
    use (B) once more: = 5(ab - (a+b)^2)
    now use (C): = 5(2) = 10

  • @thatapollo7773
    @thatapollo7773 3 місяці тому

    A simpler approach is note that f(alpha) + f(beta) + f(gamma) = 0, which gives us the sum of cubes and then note alpha^2 f(alpha) + beta^2 f(beta) + gamma^2 f(gamma)=0 which gives us the 5th powers sum

  • @حسينالقطري-ب8ص
    @حسينالقطري-ب8ص 3 місяці тому

    Thank you very much for such great video.
    I know many great books in algebra, containing such problems. But I am looking for a better one in your opinion, could you please suggest?
    Thanks❤

  • @samyachakraborty263
    @samyachakraborty263 3 місяці тому +1

    who needs netflix

  • @easymathematik
    @easymathematik 3 місяці тому

    A very nice approach is to use polynomial long division involving the function and its derivative

  • @datokvartskhava4711
    @datokvartskhava4711 3 місяці тому

    x^3+2x+1=0 does not have 3 solution it ahs only one if you graph the function

    • @jamesstrickland833
      @jamesstrickland833 3 місяці тому +5

      it has 1 real solution but two complex solutions.

  • @ferronzomeren2733
    @ferronzomeren2733 3 місяці тому

    4:52 I want to try to solve this system of equations.. I will post the results as a reaction

    • @ferronzomeren2733
      @ferronzomeren2733 3 місяці тому

      It does not help, as you end up with another cubic equation. In that case you can just calculate the original roots and you are done as well

  • @golddddus
    @golddddus 3 місяці тому +1

    1) α³ + β³ + γ³ + 2(α + β + γ) + 3 = 0 tanks @ivanerofeev. 2) x^2 + 2 + 1/x = 0 α ^2 + β^2 + γ^2 + 6 + (αβ + αγ +βγ)/αβγ = 0 α ^2 + β^2 + γ^2 + 6 + (2)/(-1) =0 α ^2 + β^2 + γ^2 = -4 😎