Ridge Regression for Beginners!

Поділитися
Вставка
  • Опубліковано 1 гру 2024

КОМЕНТАРІ • 68

  • @agila.p9807
    @agila.p9807 2 роки тому +20

    You have the skill to simplify a complex topic which can be understood by everyone. Please continue your great work. This world needs more teachers like you.

  • @Kmysiak1
    @Kmysiak1 4 роки тому +20

    I've watched dozens of videos on regularization and your explanation is perfect! thanks!

  • @jgianan
    @jgianan Рік тому +4

    Wow! It took me several rewinds to understand that from my professor and I got it in 3 mins with the way you explained and visualized it! Thank you!

  • @mthandenimathabelacap5466
    @mthandenimathabelacap5466 8 днів тому

    Clear explainantion of the Ridge() model. Very intuitive. SUBSCRIBED.

  • @shroukezz8878
    @shroukezz8878 Рік тому +1

    the best explanation for the ridge regression I have ever listen

  • @ksh2106
    @ksh2106 Рік тому +1

    Thank you for explaining bias and variance and not just moving forward without the explanation!!

  • @winniesebapu1364
    @winniesebapu1364 2 роки тому +1

    You explained it in simple way and with a short video. very effective

  • @HL-dw4dl
    @HL-dw4dl 3 роки тому +3

    Great video for people like me who are beginners and don't want to go deep in the Statistics part of it but a simple explanation for data science. 🧡 from India.

  • @spider279
    @spider279 2 роки тому +1

    Wow , your explaination are too good, it's my first time seeing your video and i'm really satisfied

  • @MarcoBova
    @MarcoBova 5 місяців тому

    Really a pristine work, in explaining the ideas behind the concept. I found it really useful for having an overview look before dealing with all the math behind. Thanks

  • @jeanyeager4252
    @jeanyeager4252 Рік тому +1

    Thank you for the quick and easy to understand tutorial

  • @Unbiased27
    @Unbiased27 4 роки тому +1

    The best explanation I've heard on ridge regression. Straightforward and precise! Thank you very much!

  • @goodwavedata
    @goodwavedata 4 роки тому +2

    I loved this video. I've heard about "reducing the coefficient values" in so many other places, but you explained the 'why' behind this better than any of the others that I saw.

  • @2904sparrow
    @2904sparrow 4 роки тому +2

    Very well explained, finally i got it! Many thanks.

  • @sues4370
    @sues4370 Рік тому +1

    Thank you! This is a very helpful explanation and visualization of ridge regression.

  • @gzuzchuy505
    @gzuzchuy505 4 роки тому +2

    Perfect explanation!!
    You explained it in simple way and with a short video.
    Thanks, keep the good work

  • @ThePiratefan96
    @ThePiratefan96 10 місяців тому +1

    Very helpful! Thank you Professor!

  • @Reglaized
    @Reglaized 2 роки тому +1

    Great explanation! Thank you!

  • @wingyanwong3208
    @wingyanwong3208 3 роки тому +1

    Very good explanation. Thank you. It gives me the idea of ridge regression.

  • @fergavilan132
    @fergavilan132 2 роки тому

    The only and first video that allowed me to understand this shit. Thanks!!

  • @zhannadruzhinina4235
    @zhannadruzhinina4235 Рік тому +1

    This is a great video, thank you!

  • @FaisalR-n4z
    @FaisalR-n4z 11 місяців тому +1

    Amazing explanation, thanks ryan

  • @geneticengineer7720
    @geneticengineer7720 4 роки тому +3

    You made it easy to understand. But where do you get the alpha and slope? From the testing data set? Then the testing data set becomes the training data set.

  • @palaknath
    @palaknath 3 роки тому +1

    Thank you Sir! the great explanation made the concept seem so easy!

  • @khaledsherif7056
    @khaledsherif7056 4 роки тому

    I like how you explained that well in a 7 min video.

  • @ekleanthony7997
    @ekleanthony7997 3 роки тому +1

    Awesome Explanation. thanks!

  • @ThuyTran-bw7dq
    @ThuyTran-bw7dq 2 роки тому +1

    Thank you sir, it's so simple!

  • @cdhaifule
    @cdhaifule 3 роки тому +1

    Wonderful explanation. Thank you.

  • @SajidHussain-dt7ci
    @SajidHussain-dt7ci 2 роки тому +1

    really appreciate your effort thanks for help!

  • @benuploads7964
    @benuploads7964 2 роки тому

    amazing explanation!

  • @cesar3550
    @cesar3550 4 роки тому

    Great video and great english as well, you gained a new sub

  • @Luckys1191
    @Luckys1191 2 роки тому +1

    Good Explanation....

  • @yl3046
    @yl3046 5 років тому

    Good Intuition. Contradicting in the slides whether ridge regression increase/decrease for bias and variance.

  • @kislaykrishna8918
    @kislaykrishna8918 3 роки тому +1

    great crystal clear

  • @shivu.sonwane4429
    @shivu.sonwane4429 3 роки тому

    In ridge regression alpha never be 0 . ☺️ Easy and clear explanation

  • @tyman1449
    @tyman1449 4 роки тому +3

    Thank you for your short video. But I did not understand why we should minimize the slope. It is just a possibility and depends on test data. You may increase the slope to get minimum residuals.

    • @SumitKumar-uq3dg
      @SumitKumar-uq3dg 4 роки тому

      Minimizing or maximizing is decided after looking at the total errors. If maximizing increases the error then we will go to minimizing the slope.

  • @malinyamato
    @malinyamato Рік тому +1

    great intro !

  • @quant-prep2843
    @quant-prep2843 3 роки тому +3

    what if model needs high sensitivity to dependent variable ?

  • @faizanzahid490
    @faizanzahid490 4 роки тому +12

    Really appreciate the tutorial, just one query, Does regularisation always reduce the slope? I mean i think it's possible for the test dataset to have more slope than training set.

    • @marcelocoip7275
      @marcelocoip7275 2 роки тому

      Black hole here... Looking for this answer...

    • @KrishnenduJ-hc5fg
      @KrishnenduJ-hc5fg Рік тому

      Regularisation minimises the sum of squared errors while also minimising the sum of squared magnitudes of the coefficients. This pushes the ridge coefficients closer to zero. But yes, if the penalty term is too small, the slope may resemble that of OLS.

    • @KrishnenduJ-hc5fg
      @KrishnenduJ-hc5fg Рік тому

      So it is highly unlikely for regularisation to increase the slope than that of OLS.

  • @talkingabout-h8d
    @talkingabout-h8d 4 роки тому

    Thank you for this *great explanation*

  • @chintunannepaga579
    @chintunannepaga579 3 роки тому

    excellent concept explanation.. thank you

  • @leiyarabe7482
    @leiyarabe7482 4 роки тому

    👏👏👏👏👏👏 well explained!

  • @Muziekmixen
    @Muziekmixen 4 роки тому

    Suggestion: You explained very well Ridge & Lasso Regression, make also one for Elastic Net!

  • @ramspalla8036
    @ramspalla8036 2 роки тому

    Hi Ryan, Can you please do a video on Elastic Net Regression?

  • @raedos1
    @raedos1 3 роки тому

    It just feels like a fancy way to include your testing set into your training set, essentially making 100% of your data a trainingset. What is the difference between those?

  • @yugoeugis6733
    @yugoeugis6733 4 роки тому +2

    Education is about pedagogy. Who teaches. Here's a good one.

  • @VBeniwal_IITKGP
    @VBeniwal_IITKGP 4 роки тому

    Thank you sir🙏🙏

  • @NoelGeorge-l4g
    @NoelGeorge-l4g Рік тому

    How does increasing Lambda trem reduces the slope. We are multiplying Lambda with Slope right, which is constant?

  • @Pankaj_Khanal_Joshi
    @Pankaj_Khanal_Joshi 10 місяців тому

    Sir how do we know that during regularization we have to increase or decrease the slope.

  • @spandangude8973
    @spandangude8973 3 роки тому

    thank you for the video. do you speak Farsi ?

  • @adrianaayluardo8583
    @adrianaayluardo8583 5 років тому

    Thank you!

  • @Cherdanye
    @Cherdanye 3 роки тому +2

    5:01 door opens

  • @marcelocoip7275
    @marcelocoip7275 2 роки тому

    But how ridge works if the variance decrease with a steeper slope?

  • @Frdy12345
    @Frdy12345 11 місяців тому

    Isn’t alpha actually lambda?

  • @Nimkrox
    @Nimkrox 5 років тому +5

    The explaination is good, but I think that your example could be better. Having 3 points in the training set and 5 points in testing set is not a good practise. Also your 3 training points will give the same line every time, so again: not the best example

    • @deathwiddle3826
      @deathwiddle3826 10 місяців тому

      your such a hater😢

    • @a7med7x7
      @a7med7x7 5 місяців тому

      The example is perfect, it is for illustration, and textbooks use the same amount for training data points, it’s better to emphasize the idea of more testing data points to show the mainstream and pattern of the data, in reality, the dataset you use will never be as much as the samples it was testing or seen on.
      The 3 similar training data points are the same reason why the problem occurs, and the ideal mechanism for solving it is to deviate your model from it.