Calculus of Variations and the Functional Derivative

Поділитися
Вставка
  • Опубліковано 31 жов 2024

КОМЕНТАРІ • 17

  • @friedrichwilhelmhufnagel3577

    Thank you for this crystal clear demonstration on the nature of functionals

  • @RobertWF42
    @RobertWF42 3 роки тому

    Thanks for posting, Kevin! I'm coming to this topic from the field of statistics.

  • @arkansh.h.1313
    @arkansh.h.1313 11 днів тому

    Thank you for the great illustrations.
    I hope if you can type the name of the book.

    • @KevinCassel
      @KevinCassel  2 дні тому

      The book is in the description box below the video.

  • @shreeniwaz
    @shreeniwaz Місяць тому

    Is epsilon equivalent to 'norm' of the function?

  • @chadwinters4285
    @chadwinters4285 2 роки тому +2

    I think the use of the term ϵ * η(x) is not so clear. What does du / dϵ look like geometrically?

    • @KevinCassel
      @KevinCassel  2 роки тому

      Yes, this is confusing (which is why we prefer variational notation once we get used to it). Think of changes in epsilon as representing moving from one candidate function to another. Thus, du/deps represents the change in the function that we are seeking u(x) as we move from one function to another (via changes in eps). It is analogous to differential calculus, where du/dx represents the change in the function u(x) as we move from one point x to another.

    • @keifonlee8342
      @keifonlee8342 11 місяців тому +1

      @@KevinCassel But in the presented notation, we got epsilon from no where, not like the du/dx where we know x is the independent variable. So the appearance of eps is not quite straight forward

  • @CC-by3sn
    @CC-by3sn Рік тому

    Does the functional derivative not depend on the x1 and x2 in the integral then?

    • @KevinCassel
      @KevinCassel  Рік тому

      The x1 and x2 define the domain for the differential equation given by the functional derivative, i.e. where the boundary conditions are defined.

  • @exxzxxe
    @exxzxxe 2 роки тому

    Well done!

  • @Ksnieup
    @Ksnieup 2 роки тому

  • @martonzoldy1258
    @martonzoldy1258 Рік тому

    Excuse me, I think it is the Dirac delta distribution instead of the Kronecker delta.