Introduction to Circular Convolution and Filtering with the DFT

Поділитися
Вставка
  • Опубліковано 9 лис 2024

КОМЕНТАРІ • 13

  • @chandanjaiswal7011
    @chandanjaiswal7011 8 років тому +5

    One of the most useful resources to learn Signal Processing .
    Thanks a lot Sir .

  • @paliendroom
    @paliendroom 9 років тому +3

    If only you would teach at my university. Thank you so much!

  • @dallasjohnson6060
    @dallasjohnson6060 11 років тому +2

    My gosh I just found this...amazing. My DSP class is a killer

  • @allsignalprocessing
    @allsignalprocessing  11 років тому

    Circular convolution is described in the next lecture in the DFT and Applications playlist. Somehow that temporarily got deleted from the playlist, but it is there again now.

  • @zz9758
    @zz9758 3 роки тому

    Thanks for the great lecture! If do H[n]* Sum{X[n-lN]}. this will convolute with all X[n-lN] ? The result shouldn't be the same as H[n]* X[n-lN] ?

  • @sacrusytong5640
    @sacrusytong5640 11 років тому

    Great !..All your videos help me a lot to my DSP learning !
    This video would be listed to which playlist?
    Or there will be a playlist about Circular convolution ?

  • @mortezasjah6168
    @mortezasjah6168 6 років тому +1

    Great explanation!

  • @Capibara1
    @Capibara1 11 років тому +1

    Amazingly helpful, well done.

  • @aothothien6621
    @aothothien6621 10 років тому

    thank you. I have a problem.what the apply of the circular convulation? example: in the audio edited?

  • @andrewdenterlein6447
    @andrewdenterlein6447 10 років тому

    Thank you!

  • @MrPicou51
    @MrPicou51 8 років тому

    Great!

  • @thevoid141
    @thevoid141 7 років тому

    I'm little confused at 8:14 . Convolution duration is (Mx + Mh - 2) or (Mx + Mh - 1) ?

    • @SanduniPremaratne
      @SanduniPremaratne 7 років тому +1

      Number of samples. From zeroth to (Mx + Mh - 2)th. Note how Mx duration sequence has last sample at (Mx-1) and Mh long one has it at (Mh-1).