Equation Solving Ⅰ Olympiad Mathematics Ⅰ A Nice Algebra Question

Поділитися
Вставка
  • Опубліковано 10 січ 2025

КОМЕНТАРІ •

  • @frankopinion4114
    @frankopinion4114 Рік тому +1

    let y = 2^x
    Numerator (N)=y^3-y=y*(y^2-1)= y*(y-1)*(y+1)
    Denominator (D)= 3^x * (y-1)
    Eliminating common factor (y-1)
    N=y*(y+1)=2^x*( 2^x+1)
    D=3^x
    N/D=2 can be written as ..
    N=2*D
    2^x * (2^x+1) = 2 * 3^x
    Now both ( 2^x+1) and 3^x are odd means both do not have factor 2 in them, so that would mean
    Case 1..
    2^x=2 so x=1
    Case 2
    2^x+1=3^x
    x=1 will obviously work (as per solution derived from Case 1)
    Any value of x > 1 or

  • @yuusufliibaan1380
    @yuusufliibaan1380 2 роки тому +5

    Thank you very much dear teacher sharing with us and making everything so easy to comprehend and connect with keep going 😘👍🙏

  • @nineko
    @nineko 2 роки тому +3

    I tried to put this equation in Wolfram Alpha for the sake of it, and it says that x = 0 is also a valid solution, but it obviously can't be, for the reason stated in the video, nice work breaking one of the most popular math tools 😁

  • @Trzmiel2x
    @Trzmiel2x 2 роки тому +2

    0 is a valid solution if you take a limit as x approaches 0, because then you get closer and closer to two
    if x=0,000001 wolfram alpha says its basically 2 (it is 1.9999988...)

  • @rubensramos6458
    @rubensramos6458 2 роки тому +1

    Nice work. Congrats. After some algebra the problem is reduced to (4/3)^x+(2/3)^x = 2 whose solutions are x = 0 and x = 1. The solution x = 0 can be acceptable because lim x->0 (8^x-2^x)/(6^x-3^x) = 2. In general, the solutions of a^x+b^x=c are x1=(1/ln(b/a))*ln((1/z)*Wq(z*(c^z); q = 1-1/z)) with z = ln(b/a)/ln(a) and x2=(1/ln(a/b))*ln((1/y)*Wq(y*(c^y); q = 1-1/y)) with y = ln(a/b)/ln(b). q is the parameter of the Lambert-Tsallis Wq function used. One can find more details in the paper (only two pages) "Solving the Fractional Polynomial ax^r +bx^s +c = 0 Using the Lambert-Tsallis Wq Function" that can be downloaded on Researchgate.

  • @AlexeyEvpalov
    @AlexeyEvpalov 2 роки тому +3

    Спасибо.

  • @ismaelvera8727
    @ismaelvera8727 2 роки тому

    1

  • @АндрейАнцышкин

    Х=1. Моментально.

  • @Jaeoh.woof765
    @Jaeoh.woof765 2 роки тому

    x=1

  • @חיידקימחשבהערוץ
    @חיידקימחשבהערוץ 2 роки тому

    N×n !=2n

    • @bienvenidos9360
      @bienvenidos9360 Рік тому

      No, this is not true.
      n × n = n²
      n³ × n⁴ = n⁷

  • @MrKitty2750
    @MrKitty2750 Рік тому

    You must try to derive the steps more than now.
    Do not jump up.
    If You should write the reference concept or theory, it will be better than now.
    Thanks.

  • @张建-w5d
    @张建-w5d Рік тому

    这最后都是蔡来了!奇数偶数之类的??

  • @ralph_6579
    @ralph_6579 Рік тому

    x=1