Introducing Convolutions: Intuition + Convolution Theorem

Поділитися
Вставка
  • Опубліковано 9 лют 2025
  • In this lesson, I introduce the convolution integral. I begin by providing intuition behind the convolution integral as a measure of the degree to which two functions overlap while one sweeps across the other. I demonstrate this intuition by showing that the convolution of two box functions is a triangle.
    I then move on to proving the Convolution Theorem for Fourier Transforms, and discussing how it compares to the Convolution Theorem for Laplace Transforms. The proof for Fourier Transforms is relatively simple, but the proof for Laplace Transforms is a bit more difficult (if you really want to see the Laplace Transform proof, I can make another video but I've put it off for now).
    Questions/requests? Let me know in the comments! Hopefully the intuition I provided was sufficiently clear.
    Prereqs: Very basic knowledge of Fourier and Laplace Transforms (i.e. you just need to know what they are and what they're used for), ODEs, and integration. Playlist: • Topics in Ordinary Dif...
    Lecture Notes: drive.google.c...
    Patreon: www.patreon.co...
    Twitter: / facultyofkhan
    Special thanks to my Patrons for supporting me at the $5 level or higher:
    Jose Lockhart
    Yuan Gao
    Justin Hill
    Marcin Maciejewski
    Jacob Soares
    Yenyo Pal
    Chi
    Lisa Bouchard

КОМЕНТАРІ • 110

  • @dipankerbaral3301
    @dipankerbaral3301 6 років тому +137

    i hereby declare this underrated video the best explanation of convolution in the internet

    • @BoZhaoengineering
      @BoZhaoengineering 4 роки тому +1

      I hereby agreed! the best interpretation of what is convolution integral and its fourier transform and laplace transform. Clear concept explained in plain language and easy function plot. Prompt those nasty algebra expression to save audiences' concentrated energy for listening to the core ideas. superb.

    • @fsto9039
      @fsto9039 4 роки тому

      agree

    • @raghua9318
      @raghua9318 3 роки тому

      Function plot explanation of convolution of two functions is similar to explanation of correlation between two functions. How do they differ?

    • @varun_4125
      @varun_4125 3 роки тому

      Fr

  • @riyabansal9191
    @riyabansal9191 2 роки тому +4

    Oh my god, I have been trying to gain an intuition on this topic for so long. So glad I ran into this video! Thank you, sir.

  • @gutzimmumdo4910
    @gutzimmumdo4910 Рік тому +3

    finally someone explains concisely what that fucking -t means for fuck sakes, thank you alot best explanation of convolution on the internet.

  • @ASHUTOSHKUMAR-en9vv
    @ASHUTOSHKUMAR-en9vv 2 роки тому +1

    best video for convolution

  • @pratikahir148
    @pratikahir148 6 років тому +5

    Please continue to make such videos,it serves as a quick refresher for me before exam(VERY HELPFUL).

  • @rockspoon6528
    @rockspoon6528 4 роки тому +2

    I've been through all four calc courses and am on Linear Circuits 2, and this is the first time anyone's written the first part of the definition.
    And it makes sense now.

  • @davidarredondo2106
    @davidarredondo2106 6 років тому +179

    "I won't be spending the next 18 minutes taking the convolution of sin and cosine in an effort to show you that the convolution of two functions is an actual quantity."
    Savage.
    I agree though--that Kahn academy video was a waste of time

    • @FacultyofKhan
      @FacultyofKhan  6 років тому +66

      I'm glad someone understood the reference haha

    • @dania5426
      @dania5426 5 років тому +18

      I had to go back to the Khan Academy's video to understand how it is happening. I think both videos are very useful and needed. However it was rude from the Faculty of Khan to say so.

    • @engineered.mechanized
      @engineered.mechanized 5 років тому +20

      @@dania5426 I agree with that. Educators should maintain mutual respect for one another. True professionalism is depicted in how you present these videos. Salman from Khan Academy is never seen to say anything that is not pertinent to the topic of the video. Whereas, Faculty of Khan, even in his intro video felt the need to defame the other educators who have put out their own lectures in the past. I am an Engineer and an educator myself and I believe it is for the sake of the growth of this channel it would be better for Faculty of Khan not to defame other educators. For the purpose of roasting and dissing we already have tonnes of other entertainment channels.

    • @ztac_dex
      @ztac_dex 5 років тому +8

      so that the 2 Khans don't overlap

    • @filippocastellani4761
      @filippocastellani4761 4 роки тому +3

      @@ztac_dex If I understood the lecture, I'd say that the convolution of the two videos must be nearly zero.

  • @ostensiblyquerulous
    @ostensiblyquerulous 6 років тому +8

    Oh boy can’t wait to see this!

  • @simrannahar8262
    @simrannahar8262 Рік тому

    this was extraordinarily well explained

  • @duckymomo7935
    @duckymomo7935 6 років тому +59

    LOL “I hope that the explanation wasn’t too convoluted, haha”

  • @khaledtaleb3085
    @khaledtaleb3085 5 років тому +1

    Thanks god that you made me saw this video in the first month of the semester

  • @thevoidzzz
    @thevoidzzz 3 роки тому

    This is such a MONUMENTALLY important idea in electrical engineering, I don't understand why so many other videos and teachers are so bad at explaining this topic

  • @TheNinjaDwarfBiker
    @TheNinjaDwarfBiker 5 років тому +1

    The hero that we all needed

  • @shine_at_dusk
    @shine_at_dusk 4 роки тому

    Thank you very much) The explanation is so clear I've watched only for about 2 minutes and already got the idea behind the use case

  • @pramod120895
    @pramod120895 3 роки тому

    Thanks for the explanation... Atlast got a clear visualisation on this topic

  • @djtoddles8750
    @djtoddles8750 6 років тому +3

    this is great, please make more of these intuition vids

  • @Vicky-pb5hg
    @Vicky-pb5hg 5 років тому +1

    What a fantastic explanation. :-) 🙏

  • @xiaoxuanwang2570
    @xiaoxuanwang2570 5 років тому +3

    This is sooo helpful! Thank you!

  • @rogerz741
    @rogerz741 5 років тому +1

    Thank you! The concept of convolution is concisely presented.

  • @eulefranz944
    @eulefranz944 6 років тому +1

    Love the convolution :) great work!

  • @luansouzasilva31
    @luansouzasilva31 5 років тому +5

    THANK YOU SO MUCH, I LOVE YOU

  • @hilalnizamoglu4599
    @hilalnizamoglu4599 5 років тому +1

    Amazing explanation, thank you!

  • @giwahdavalos4699
    @giwahdavalos4699 4 роки тому

    Awesome explanation

  • @slashpl8800
    @slashpl8800 5 років тому

    Awesome, that's what I was looking for

  • @j_j8758
    @j_j8758 4 роки тому

    Omg thank u so much. This was very helpful.

  • @MrNiceFromUkraine
    @MrNiceFromUkraine 4 роки тому

    great explanation! thanks

  • @Dontonethefirst
    @Dontonethefirst 3 роки тому

    Getting me through signals and systems man.

  • @olenbrown8145
    @olenbrown8145 2 роки тому

    "I wont be spending the next 18 minutes showing you the convolution of sine and cosine in an effort to demonstrate that the convolution of two actual functions is an actual quantity" damn, some harsh words for sal

  • @rordic.y5947
    @rordic.y5947 3 роки тому

    From your last video almost like 10 years ago and you said the upper limit and of the integration to be t, then the lower limit of the integration to be zero thereupon leading to totally different result, can you explain the reason behind this two different operation?

  • @gatoradeee
    @gatoradeee 6 років тому +3

    Very gud as always.

  • @LakshmikanthAyyadevara
    @LakshmikanthAyyadevara 4 роки тому +1

    excellent video

  • @coreysimmerer
    @coreysimmerer 6 років тому +8

    Is the voice computer generated or not? That's all I can focus on.

    • @FacultyofKhan
      @FacultyofKhan  6 років тому +19

      Uhhh no, absolutely not! I am totally not a computer-generated voice/teacher.
      Beep beep boop boop.

    • @GaryTugan
      @GaryTugan 5 років тому +1

      Ahhhh, well I thought the same thing. 👍

    • @graemelaubach3106
      @graemelaubach3106 4 роки тому

      I wish computer-generated voices sounded this good. What kind of computer-generated videos have you guys been watching??

  • @area51xi
    @area51xi 3 роки тому +1

    You're actually sweeping across values of tau not t. t is a constant inside the integrand and that is why integrating results in a function of t, y(t).

  • @ML2011ML
    @ML2011ML 4 роки тому

    Boundary condition between negative side and positive side can use Laplace Transform too. Fourier Transform is just a special version of Laplace Transform.

  • @schrodingerbracat2927
    @schrodingerbracat2927 3 роки тому

    FYI, t - tau is the reflection of tau in a vertical mirror at t/2.

  • @themightyquinn100
    @themightyquinn100 2 роки тому

    I've always learned that the upper bound of the integration was 't' for the laplace convolution, not 'inf'. One give you a function of t the other gives you a number. How do we distinguish between these two?

  • @NikhiLKumar-nx9nt
    @NikhiLKumar-nx9nt Рік тому

    we can do this by applying the tau-t also in g.
    then why do we do that taking the mirror of g

  • @coz_outline
    @coz_outline 3 роки тому +1

    The "Ha Ha" in 6:30, lol
    Thanks anyway

  • @y031962
    @y031962 3 роки тому

    thanks for the video; I didn't get how you split the exponential into two forms. Can someone shed light on that part? thanks

  • @stekim
    @stekim 5 років тому

    Super helpful thank you

  • @ebisharifi5244
    @ebisharifi5244 4 роки тому +1

    Thank you

  • @LoganStVrain
    @LoganStVrain 6 років тому +2

    Could you do a video about the Fourier transform (definition, purpose and derivation). Also, what is the difference between a Fourier Transform and a Fourier Series. Thanks!

    • @FacultyofKhan
      @FacultyofKhan  6 років тому +5

      Sure, as I continue my series on PDEs, I'll do some videos on Fourier!
      Also, a Fourier Transform is an operation that converts a function of time to a function of frequency (in a sense, it's like the Laplace Transform), while a Fourier series is a way to express a function as a sum of sines and cosines. Hope that helps!

  • @midreesbhat11bhat26
    @midreesbhat11bhat26 5 років тому +1

    Nice illustration.....

  • @marlonbrade9424
    @marlonbrade9424 5 років тому

    so what the idea ,in the case that one of the function is not well defined somewhere ?

  • @erfanmohagheghian707
    @erfanmohagheghian707 5 років тому

    Hi sir,
    If the upper limit of the convolution integral for Laplace transform is infinity, then why
    LaplaceInverse(F(s)xG(s))=int f(Tau)xg(t-Tau)d_Tau from Tau=0 to "Tau=t" (and not infinity), where F(s) and G(s) are the Laplace transforms of f(t) and g(t)?
    Thanks.

    • @dougb70
      @dougb70 4 роки тому

      that's exactly what I was thinking. Thanks for being so brave.

  • @rishidey
    @rishidey 4 роки тому

    Excellent

  • @sherzadakhan3191
    @sherzadakhan3191 6 років тому

    Dear how g(tau) represent function over a range/interval? isn't g(tau) only represent value of g at a particular point (tau)?

  • @principioequivalencia9455
    @principioequivalencia9455 4 роки тому

    I love you!

  • @debarshimajumder9249
    @debarshimajumder9249 6 років тому +1

    BUT VERY HELPFUL VIDEO... THANK U...

  • @CHEESYhairyGASH
    @CHEESYhairyGASH Рік тому

    At 2:02, isn't it the increasing value of Tau, rather than t, that causes the g function to sweep to the right? If you have y = (x - Tau)^2 and you increase the value of Tau, you will cause the function to shift rightwards.

    • @FacultyofKhan
      @FacultyofKhan  Рік тому +1

      It's a bit different in this case; to use your analogy, we're increasing the value of x and not tau (this is the same as increasing t in g(t-tau)). If you draw y = (x-tau)^2 (y vs. tau as your axes), then increasing x will make your function move rightward. For instance, if x = 0, then y = -tau^2 (i.e. the vertex of the parabola will be at tau = 0). However, if x = 1, then y = (1-tau)^2: now, the vertex of the parabola will be at tau = 1 (i.e. you've moved your function to the right). Same idea in 2:02.
      Hope that helps!

    • @CHEESYhairyGASH
      @CHEESYhairyGASH Рік тому +1

      @@FacultyofKhan That does help, thank you.

  • @duckymomo7935
    @duckymomo7935 6 років тому +2

    I love Fubinis theorem

  • @ovais217
    @ovais217 4 роки тому

    haha, amazing video !! Thanks man !!

  • @simonbour56p
    @simonbour56p 5 років тому

    What do you use to make the drawings?

  • @elzedliew972
    @elzedliew972 6 років тому

    whats the software used to draw here?

  • @Starcell170
    @Starcell170 5 років тому

    Good explaining! This is why Convolution that is used for image filtering is also called "convolution"

  • @douglasstrother6584
    @douglasstrother6584 5 років тому

    Slick!

  • @user-or7ji5hv8y
    @user-or7ji5hv8y 4 роки тому

    but I wonder why do we need a construct such as convolution?

  • @SO-dl2pv
    @SO-dl2pv 6 років тому

    Why you are supposing f(t) and g(t) to be positives? that is not the case in general

    • @FacultyofKhan
      @FacultyofKhan  6 років тому

      It's not you're right, but this was just a way to explain the idea behind convolutions. Using positive functions is more intuitive for teaching purposes than using negative functions.

  • @lovedancing1996
    @lovedancing1996 6 років тому +6

    khanvolution

  • @therealbriancox
    @therealbriancox 4 роки тому

    First time seeing "Faculty of Khan", after coming from Khan Academy, also thought it was a robot talking and couldn't help but think- is this an incredibly advanced neural network, trained on Khan Academy neural net tutorials to output simpler neural net tutorials? Is this a weak AGI primitively reaching out and asking us to bring it to full capacity? If so, uh... *I'm here to help* Cheers! 🍺

  • @chunchaoma4473
    @chunchaoma4473 6 років тому

    I like your cool video

  • @callmedeno
    @callmedeno 6 років тому +1

    fuckin hell well explained

  • @akhilnikhilkandagiri5159
    @akhilnikhilkandagiri5159 4 роки тому

    Khan-volution?

  • @alexis-74
    @alexis-74 4 роки тому

    genius

  • @nikhilkenvetil1594
    @nikhilkenvetil1594 6 років тому

    Doesn't sound like Sal.. I thought it was his other channel.

  • @The_Aleph_Null
    @The_Aleph_Null 4 роки тому +1

    Khanvolution

  • @c.danielpremkumar8495
    @c.danielpremkumar8495 6 років тому +1

    All you guys seem to use the word "convolution" wrongly. It should be "convolved with" or "convolving with".

  • @yashgupta3127
    @yashgupta3127 4 роки тому +1

    This is not intution man you jus explained formula

  • @sachinbadge465
    @sachinbadge465 5 років тому

    He is dad of khan academy

  • @alexbrightchargeai
    @alexbrightchargeai 5 років тому

    huh??

  • @avijitsazzal4184
    @avijitsazzal4184 5 років тому

    Ha Ha

  • @fawesomekila
    @fawesomekila 5 років тому

    haha

  • @NadimC137
    @NadimC137 6 років тому

    khanvolution? xD

  • @shwetabhsingh5437
    @shwetabhsingh5437 4 роки тому

    khanvolution lol

  • @mmpmaldo
    @mmpmaldo 5 років тому

    6:32

  • @the_sophile
    @the_sophile 2 роки тому

    Thank you

  • @dk-cn1tc
    @dk-cn1tc 5 років тому

    khanvolution

  • @CHEESYhairyGASH
    @CHEESYhairyGASH Рік тому +1

    Thank you