4. Factorization into A = LU

Поділитися
Вставка
  • Опубліковано 23 кві 2017
  • MIT 18.06 Linear Algebra, Spring 2005
    Instructor: Gilbert Strang
    View the complete course: ocw.mit.edu/18-06S05
    UA-cam Playlist: • MIT 18.06 Linear Algeb...
    4. Factorization into A = LU
    License: Creative Commons BY-NC-SA
    More information at ocw.mit.edu/terms
    More courses at ocw.mit.edu

КОМЕНТАРІ • 358

  • @SilverArro
    @SilverArro 4 роки тому +506

    The shoes and socks analogy for inverses of matrix products is probably the cutest thing a math genius has ever said.

    • @OrionConstellationHome
      @OrionConstellationHome 3 роки тому +7

      It is in every textbook.

    • @SilverArro
      @SilverArro 3 роки тому

      @Reed Morris Who put together the ranking you speak of? This is not something one can evaluate objectively. Try again.
      And of course this is basic math. This is a freshman or sophomore undergraduate math class. How does that relate to my original comment at all?

    • @Gojam12
      @Gojam12 3 роки тому

      @@SilverArro I know not of the ranking you speak of, how can you rank the cuteness of all genius's by your own mechanism's. He isn't very bright in my book, but I guess he can still be a math genius. How do you know he didn't just study hard. Every competent is not a genius just because they are to you.

    • @Gojam12
      @Gojam12 3 роки тому

      @@SilverArro most places require 2 years of college calculus before linear that's the third year btw just saying. Saying its entry level doesn't uplift you at all.

    • @SilverArro
      @SilverArro 3 роки тому +5

      @@Gojam12 The ranking thing was in reply to a comment that has apparently since been deleted. I really have no idea what you’re talking about and I don’t particularly care. You do not need 2 years of college calculus to take linear - 2 semesters maybe (that’s a single year). I took AP Calc in high school and went straight into Multivariate Calc and Linear my freshman year. Since this is MIT, I’m going to guess many students are in a similar boat. Linear Algebra is indeed basic math, sorry. It is where most students just begin to get their feet wet in digging into mathematical theory. If you want to argue further over something so trivial, feel free to keep arguing with yourself here - I won’t be replying again. This was a lighthearted comment and certainly not meant to be a treatise on mathematical genius - I find it amusing that you should need that pointed out to you. Goodbye.

  • @these2menrgannadoit
    @these2menrgannadoit 6 років тому +252

    Gilbert Strang lecture: "and this is a matrix..."
    Gilbert Strang textbook: "Find the corners of a square in n dimensions and whether vectors a, s, d,e w,wieidwdjdkdk are contained in the cube...."

    • @koraincharles3029
      @koraincharles3029 6 років тому +8

      lmaoo omg

    • @ashianagi
      @ashianagi 5 років тому +19

      THAT IS SO TRUE OMG

    • @Gojam12
      @Gojam12 3 роки тому +1

      so in other words he aint worth a shit is that what you mean? Because I agree

    • @Humanjobec24567
      @Humanjobec24567 3 роки тому +6

      he even admits that some of its examples are dumb

    • @judahdsouza9196
      @judahdsouza9196 3 роки тому +3

      @@Gojam12 what do you mean?

  • @solomonxie5157
    @solomonxie5157 6 років тому +458

    Lecture timeline Links
    Lecture 0:00
    What's the Inverse of a Product 0:25
    Inverse of a Transposed Matrix 4:02
    How's A related to U 7:51
    3x3 LU Decomposition (without Row Exchange) 13:53
    L is product of inverses 16:45
    How expensive is Elimination 26:05
    LU Decomposition (with Row exchange) 40:18
    Permutations for Row exchanges 41:15

    • @shafinrahman16
      @shafinrahman16 5 років тому +1

      awesome

    • @KoLMiW
      @KoLMiW 4 роки тому +7

      Solomon Xie You are the hero everyone needs :D

    • @saurycarmona5716
      @saurycarmona5716 4 роки тому +3

      What is the book that the student use for this course?

    • @mihirnatani4479
      @mihirnatani4479 4 роки тому +7

      @@saurycarmona5716 The professor himself is the author of the book.Its called
      'INTRODUCTION TO LINEAR ALGEBRA'
      By GILBERT STRANG

  • @mciniell
    @mciniell Рік тому +194

    I remember being a student and rushing out after class, as these students did. But now at the ripe age of 35, I see these students doing the same and I think "HOW DARE THEY NOT STOP AND APPLAUD FOR SUCH A MASTERFUL PERFORMANCE"

    • @supersnowva6717
      @supersnowva6717 Рік тому +4

      I feel exactly the same

    • @pauldalnoky6055
      @pauldalnoky6055 Рік тому

      ​@Supersnowva he's great

    • @rbnn
      @rbnn Рік тому +13

      It would be hard for a beginning linear algebra student to appreciate how much better Strang’s teaching is than most courses.

    • @jamesbarrett1583
      @jamesbarrett1583 10 місяців тому +1

      I did my maths degree in the late 1970s-early 1980s. I did a load of linear algebra, I didn't realize how lucky I was. Watching professor Strang just makes me want to pick up an algebra book, and work through it. Bravo Professor.

    • @CaesarDux
      @CaesarDux 10 місяців тому +3

      If reincarnation and time travel both turn out to be things, I want to come back as a student in his class.

  • @gustavodelarosa3384
    @gustavodelarosa3384 7 років тому +55

    i literally waited years for this video. im going to binge watch this bitch

  • @tianjoshua4079
    @tianjoshua4079 Рік тому +20

    The internet is such a wonder! Thanks to it, I can learn from great educators like Prof. Strang from the comfort of my home. What a nice era to be a human in.

  • @Jean-Berry
    @Jean-Berry 5 років тому +80

    46:15 Holy shit! He gave a teaser to abstract algebra right there! I just finished abstract algebra and was just watching these lectures because... I don't need a reason, and I just noticed that now! Prof Strang is amazing. I am glad I can watch these lectures from anywhere and at anytime I want :)

    • @SilverArro
      @SilverArro 4 роки тому +5

      Jͼan Yep. He gives a very nice and basic example of a group. The permutation group is often one of the first examples you examine when studying group theory.

    • @TheSolder777
      @TheSolder777 4 роки тому +2

      Holy Beautiful

    • @samuelleung9930
      @samuelleung9930 4 роки тому +11

      “Because... I don’t need a reason,” you are damn right

    • @aniketlal1657
      @aniketlal1657 3 роки тому +3

      I studied discreet maths set theory today, and it just clicked that its an algebraic group the moment he said closure. Small moments of happiness :)

    • @imatreebelieveme6094
      @imatreebelieveme6094 2 роки тому +1

      In Germany our linear algebra courses open up with group and field theory and some later on even do modules if theyre feeling mean. I kind of like the approach of geometry and computations first tho, at least for physics

  • @karthik3685
    @karthik3685 2 роки тому +49

    how many times has watching a lecture brought a smile to your face ? I was constantly smiling - every time he pointed out something that I hadn't thought of in the way he mentions it. Such an amazing teacher!

    • @ranjanachaudhary2110
      @ranjanachaudhary2110 2 роки тому +7

      The moment he said the inverses of these matrices (permutation matrices) are just their transposes...
      Blew my mind I had to pause to check all of them... wow

    • @SpeaksYourWord
      @SpeaksYourWord 7 місяців тому +1

      @@ranjanachaudhary2110 Same lol that blew my mind

  • @antaratewary9645
    @antaratewary9645 6 років тому +116

    thank you mit for this...to give such a privilege to the world that they can view and learn from your content,...its commendable,..and i am grateful

  • @vtace1
    @vtace1 5 років тому +119

    "I'm sorry that's on tape" Strang 2005

    • @_avr314
      @_avr314 3 роки тому +1

      isn't it yr 2000? 2005 is the year they published the "tape", I think.

  • @animeshkumar1201
    @animeshkumar1201 2 місяці тому +1

    He just gave an intro to computational complexity in CS measured in order notations such as Big O, Omega etc. Pure gold how he also almost put the definition of small O right there. Applauds

  • @georgegvishiani736
    @georgegvishiani736 7 років тому +10

    Congratulations for finding this recording! Thank you a lot!!!

  • @justinm412
    @justinm412 5 років тому +7

    God bless MIT and Professor Strang. Such a bright light for a wonderful course!

  • @icampabadals
    @icampabadals 7 років тому +188

    for those unaware, this video was originally uploaded in very bad quality (you willl see complaints about this in the next one) and MIT OCW claimed to have lost the original recording and thus were unable to upload in higher quality. Fortunately, the seem to have found the tapes. Thanks MIT OCW!

    • @souravdatta994
      @souravdatta994 6 років тому +1

      nachomasterCR 8

    • @cartmansuperstar
      @cartmansuperstar 6 років тому +14

      yeah, those unaware fools...what do they know ! ...i remember the bad quality and was afraid of lecture 4, when i repeated the course...but let´s not scare the young folks with stories from the past... let it rest...

    • @windowsforvista
      @windowsforvista 5 років тому +2

      And where exactly is this HQ version? Or is there one that's more echo-y than this one?

    • @briann10
      @briann10 2 роки тому +1

      @@windowsforvista ua-cam.com/video/5hO3MrzPa0A/v-deo.html

    • @rajatmishra12
      @rajatmishra12 2 роки тому

      @@briann10 Damn that is bad!

  • @soheilsanati1941
    @soheilsanati1941 3 роки тому +1

    Thank you Dr. W. G. Strang, for all this knowledge you have all us favored of.

  • @bobnotto
    @bobnotto 4 роки тому +22

    Professor Strang is really enjoying teaching, I am so appreciate that I could learn from him! I like the way he teaches so much!

  • @andile5945
    @andile5945 2 роки тому +3

    I know of no soft power more effective than these lectures. Thank you MIT for the generosity and commitment.

  • @MrTZhang
    @MrTZhang 7 років тому +7

    This is SO helpful, more than thankful for this upload. I really like this professor too.

  • @joebrinson5040
    @joebrinson5040 2 роки тому +1

    Thanks, Dr. Strang. I always enjoy your lectures.

  • @shafinrahman16
    @shafinrahman16 5 років тому +4

    thanks, Profesor Gilbert Strang

  • @daisyd5168
    @daisyd5168 6 років тому +4

    Thank you so much. This is the proper education people should receive.

  • @nalinikantamaharana3932
    @nalinikantamaharana3932 6 років тому +1

    Thank's MIT to share this type of documents with the worlds. Thank's...

  • @chaitanya6245
    @chaitanya6245 6 років тому +11

    great lectures,, much better than any paid courses on Udemy or other sites

  • @swaroopnath8747
    @swaroopnath8747 3 роки тому +8

    I won't understand people who disliked this videos. I haven't liked revisiting a topic, unless it is from Deep Learning. But this! This is a gem that I will revisit my entire life, any given day.
    Bored? Pick a topic from this series.
    Depressed? Pick a topic from this series.
    Need inspiration? Pick a topic from this series.
    Time on your hands? Still need a hint?

  • @blablaotto8417
    @blablaotto8417 7 років тому

    Thanks for this one ! Was awaiting it for a long time :D

  • @suursuzbaskan
    @suursuzbaskan 7 років тому +37

    i guess I am the lucky one since i've just started to watch this video lecture series today!

  • @Itzak15
    @Itzak15 4 роки тому +34

    26:05 "What did it cost?"
    ~40:00 "Everything"

  • @LairAndersondePaulaMesquita-LA
    @LairAndersondePaulaMesquita-LA 5 місяців тому

    Wonderful explanation, prof. Gilbert. Thank you!

  • @nguyenbaodung1603
    @nguyenbaodung1603 3 роки тому

    uuuu the quality in this video is better than the another on the previous playlist

  • @selvaraj1997
    @selvaraj1997 7 років тому +3

    This professor is awesome!

  • @user-db2gu5wi4p
    @user-db2gu5wi4p 12 днів тому

    The way he connects the dots. Wow!

  • @theexecutivegamer7135
    @theexecutivegamer7135 2 роки тому +4

    He just non-chalantly planted the idea of Group Theory in at the very end of the lecture - Genius!
    If only one can make a math playlist of all the best lecturers in the world... may be I will do this.

    • @09ghost
      @09ghost 2 роки тому

      kindly share that genius playlist here..

    • @FsimulatorX
      @FsimulatorX 2 роки тому

      Yes pls share playlist

    • @ManishKumar-xx7ny
      @ManishKumar-xx7ny Рік тому

      yes please do

    • @theexecutivegamer7135
      @theexecutivegamer7135 Рік тому +1

      @@ManishKumar-xx7ny This guy is doing most of the same. Follow him.
      "The Bright Side of Mathematics"

  • @rachel_rexxx
    @rachel_rexxx 4 місяці тому

    Good God these lectures are a perfect addendum when trying to learn this topic from the book alone. Thank you thank you thank you

  • @danielvanbibber991
    @danielvanbibber991 3 роки тому

    This actually makes sense now! Thank you!

  • @allandogreat
    @allandogreat 4 роки тому

    Thanks, Dr. Strang

  • @robertcampbell5466
    @robertcampbell5466 5 років тому +1

    June 15/2019-Very good lecture!

  • @charifl755
    @charifl755 Рік тому +8

    The best teacher teaching this material as far as I know. I wonder whether his books are as good as his lectures. May he still have a long and healthy life. :)

    • @coleyoutubechannel
      @coleyoutubechannel Рік тому +3

      I have Strang's Linear Algebra for Everyone. It's a decent book. I prefer Bretscher's Linear Algebra with Applications

  • @incurable_humanist
    @incurable_humanist 3 роки тому +1

    thank god someone uploaded a better audio/video quality version the other one was abysmal

  • @Zander101084
    @Zander101084 6 років тому +114

    His closet consists of 7 version of the exact same outfit.

    • @ispeakforthebeans
      @ispeakforthebeans 5 років тому

      My exact inference

    • @siddhantnadkarni5028
      @siddhantnadkarni5028 5 років тому +2

      @Emanuel D Underrated comment LMAO

    • @TolgaYilmaz1
      @TolgaYilmaz1 4 роки тому +3

      He's a superhero! What do you expect?

    • @kshitijkumar6610
      @kshitijkumar6610 4 роки тому

      @Wilhelm Eley Dayum!

    • @renanwillianprado9187
      @renanwillianprado9187 2 роки тому +1

      ​@Wilhelm Eley If he changes his outfit daily with periodicity coprime with 7 (basically "any number"), at the end of the time we would see he using all his clothes thanks to Bézout's identity. u.u We just need to spot the minimal differences in his outfits and, statistically, hope we are right with the amount of cloaths he uses. We are doing our jobs right. u.u

  • @jiangxu3895
    @jiangxu3895 4 роки тому

    I just repeated watching this video twice and then got the idea of why L is better than E. Thanks Dr. Strang

  • @RandomDays906
    @RandomDays906 5 років тому +27

    36:49 it's (1/3)n^3 + (1/2)n^2 + (1/6)n for those wanting to know the exact answer.

    • @nachogonzalez8346
      @nachogonzalez8346 4 роки тому +1

      Porque

    • @ajiteshbhan
      @ajiteshbhan 4 роки тому

      Can you clear one thing why it is not 99sq. or(n-1)sq for first operation what is the significance Of saying about 100sq. when there is no operation specifically on first row

    • @scottliu1866
      @scottliu1866 4 роки тому +1

      Ajitesh Bhan That is because we only wanna know the highest order of the possible answer, as a estimate parameter of what so called “cost” or “complexity”.Try 1 to 10 you will find n cube is significantly greater then n sq when n grows bigger and bigger, so we just do a estimate to know the highest order is n cube which is good enough to know the cost, because n sq and other factor is so small compared with n cube.

    • @scottliu1866
      @scottliu1866 4 роки тому +1

      Ajitesh Bhan the first step is n(n-1) if we do a accurate count, but n sq is fine for the same reason that we just wanna know the approximately cost order, it is Order 2 obviously so n sq is okay instead of a more acc n(n-1).

    • @saadibnasaadhusain
      @saadibnasaadhusain 3 роки тому +1

      Still an approximation. You’re assuming that the cost for an n x n matrix is approximately n squared when it’s n squared minus n.

  • @LostAlienOnEarth
    @LostAlienOnEarth 6 місяців тому

    This man is just a genius in the purest meaning of the word. He is like Neo, he can see matrices everywhere.

  • @ozzyfromspace
    @ozzyfromspace 4 роки тому +27

    n^2 + (n-1)^2 + (n-2)^2 + ... + 2^2 + 1^2 = n * (n+1) * (2n + 1) / 6. As n becomes "big", this sum approaches n^3 / 3. His approach in the lecture is also good. Plot a graph of y = x^2 and identify the points x = n, x = n-1, x = n-2, ..., x = 1, and you'll find that if n is big enough, the discrete plots start to look more and more like the curve y = x^2, which then allows you to approximate the area under the curve. Again, what you get for a reasonably large n is n^3 / 3. One final thing is, if these operations are performed in a loop, you'll need way more time, because his analysis assumes an operation on an entire row. To achieve this, you would need vectorized code that can operate on the entire row at once. Hope this helped someone :)

    • @mkjav596
      @mkjav596 4 роки тому +6

      Shouldn't it be : n(n+1)/2
      2x2 ----> 1 operations
      3x3 ------>1+2=3 operations
      4x4 -------> 3+3=6 operations
      5x5-------->6+4=10 operations
      6x6--------->10+5 = 15 operations
      7x7---------> 15+6 = 21 operations
      Hence 1+2+3+4+5+6+.....n = n(n+1)/2
      I considerd multpliying the a row with a constant and then subtracting from another row as one operation.

    • @arupjyotidutta6038
      @arupjyotidutta6038 4 роки тому

      @@mkjav596 If you multiply a row(say a size of n) with a constant , then you are having the cost complexity as O(n).
      We generally consider it a linear complexity than just considering a constant. Since for bigger n (say > 10000) taking the operation as a constant can be expensive.

    • @ashiqhussainkumar1391
      @ashiqhussainkumar1391 3 роки тому

      @@mkjav596 thanks

    • @daniel_liu_it
      @daniel_liu_it 3 роки тому

      dude your comment is really helpful to me, may I ask you more details about the second point of your comment, that loop thing , I'm not getting that point clearly

    • @reik2006
      @reik2006 Рік тому

      Another visualization is building a pyramid starting with a block of base n^2 and height equal to one, then another smaller block with base (n-1)^2 and height one on top and so on eventually resulting in the overall height of n. When n grows and the point of observation moves away from the pyramid such that the height appears to be constant, the blocky pyramid becomes increasingly smooth and the volume approaches 1/3n^3.

  • @bl1398
    @bl1398 3 роки тому +4

    Ah that explains it. I don’t understand the math but now I finally understand why my socks are getting wet when it rains

  • @yilu7569
    @yilu7569 3 роки тому

    Thank you for your leasons!

  • @calvaguzmanalanalexis9084
    @calvaguzmanalanalexis9084 5 місяців тому

    Didn't know there were videos of his classes. I have being learning from his books in my school.

  • @yiyu9519
    @yiyu9519 3 роки тому

    love this course

  • @ankitmishra0779
    @ankitmishra0779 Рік тому +2

    Note for myself : Elementary matrices ka inversion simple hai sirf jaha -ve hai usko +ve karna hai
    Also jab ham row exchanges nahi karte hai then L simply mil jata hai bas identity matrix mein E21 ,E31 and E32 ko zero karne k liye jo operations kiye hai unka sign reverse karke Identity matrix mein respective positions par likhna hai .
    And jab ham row exchanges karte hai in order to get the U matrix then also its very simple bas as compared to previous case jab row exchanges nahi kar rahe the yaha par permutation matrices will also be present as the elementary matrices and their inverse is also very simple to calculate.
    Permutation matrix is itself it's inverse.

  • @Victual88
    @Victual88 День тому

    Thanks Gilbert!

  • @user-ud7nv6fp6q
    @user-ud7nv6fp6q Рік тому

    thank you mit for this

  • @jiyingli9938
    @jiyingli9938 4 роки тому +3

    So clear the explanation is that for a simple matrix (3X3) I can directly flush out the inverse matrix given the multiplier at each elimination step, without going thru matrix inverse and multiplication.
    Here is the process:
    (1) Flip the sign of multiplier at each elimination step.
    (2) Directly add it in the L matrix in the same position (index) of L.
    In the example of 18:00, flip (-2) I get 2, then add 2 in position L[2,1]; flip (-5) I get 5, add 5 in position L[2,3]. So I got L.
    BTW, another way to understand that L is better than E is that:
    (1) When producing E, there are interfered operations happening and thus a new (implicit) relationship between row1 and row3 is formed. As a result, a new entry (10) is appearing to reflect the newly created (implicit) relationship among row1 and row3, as shown at the position E[3, 1].
    (2) When producing L, the operations are in the right order that there are no interfered operations thus no implicit relationships were generated. So we can just plug in the multiplier (the entry) directly to L, without worrying about missing any entries.
    (3) As a side note, the entry value tells about the multiplication, BUT more importantly, the index of each entry tells about he the relationship between rows. Eg. In matrix E32, the entry E[3, 2] = -5, it means the change coming from row2 to row3, with (-5) as the amount. Getting an explicit explanation on the role of entry indexes helps a lot to build some intuitive in a long run.
    Thank you Dr. Strang. You are the hero of Linear Algebra!

    • @ElizaberthUndEugen
      @ElizaberthUndEugen 3 роки тому +2

      "When producing L, the operations are in the right order"
      I don't understand why that is. The order is determined by the order of the E_i, just in each case it is the inverse of the respective E... How can the order be "right" if it was determined by the order of the E_i. There are multiple possible sequences of E_i after all.

  • @luiul5917
    @luiul5917 3 роки тому +2

    Put on socks > put on shoes, thus to inverse the process take of shoes > take of socks 😂 Great analogy!

    • @bassmaiasa1312
      @bassmaiasa1312 2 роки тому

      But do you put on one sock, then one shoe, then the other sock, then the other shoe? Or both socks first, then both shoes? And do you have to take them off in the same order?

  • @alexey_guzey
    @alexey_guzey 4 роки тому +10

    36:05 to sleep in front of 300k people... a fucking legend

  • @bird9
    @bird9 2 роки тому

    I did't understand at the first view nor at the 2nd one but at the 3rd or even at the 4th time waw CRAZY approach !

  • @ahmedatbara3769
    @ahmedatbara3769 6 років тому +2

    (1/3)*n^3, magically! hmm! But hey, it makes sense, that is a sum of all (n-x)^2, and as he assumed for all pivots it is a continues variable then the discrete sum of continues variables turns into integral and there you have it, 1/3n^3.

  • @TalhaMahamud
    @TalhaMahamud Рік тому

    Tnx to MIT for this kind of stuff.

  • @kaidemeneghi2965
    @kaidemeneghi2965 Рік тому

    Gilbert Strang a legend

  • @andrewdudley3408
    @andrewdudley3408 7 років тому +21

    Finally! Where did you end up finding this??? Cached in someone's IE?

    • @nickpayne4724
      @nickpayne4724 3 роки тому

      They restored it by training a neural net on all the other videos together and feeding it the low quality one as input to transform

    • @FsimulatorX
      @FsimulatorX 2 роки тому

      @@nickpayne4724 no way this is the work of a neural net.

  • @forpublicstuff728
    @forpublicstuff728 2 роки тому

    Thank you so much!

  • @dalisabe62
    @dalisabe62 3 роки тому

    Since all eliminations must be done by computers for large matrices, intuitive approaches fail quickly. So, precise rigorous algorithms are the only practical way to do elimination. Gilbert Strang style defies the rigorous approach, and does it on purpose to breath life into the dull process of elimination.

  • @Panagiwthsnufc
    @Panagiwthsnufc 5 років тому +3

    when i first run into linear algebra at university i was so stuck to understand even the basic topics of my courses. then after 2-3 years i discovered mr. Strang's lectures and i have to say i am so grateful for this professor because his teaching aproach made me understang the whole concept of linear algebra and i actually found it very interesting for the first time in my life. Plus i finally passed my courses after all these years xD god bless you mr. Strang :)

  • @austinoquinn815
    @austinoquinn815 3 роки тому +1

    Group. They are a nice little GROUP.

  • @ihateusednames
    @ihateusednames 4 роки тому +2

    If you mash right at a steady pace, you can hear my last brain cells spiriting away in agony as I try and fail to comprehend Linear Algebra.

  • @westronic
    @westronic 7 років тому +7

    Great video! I love this series. In this lecture, Dr. Strang briefly mentions that the cost of operations for the det(A) will be (n!) He also shows us how the cost of getting A into upper triangular form U will be (1/3)n^3. But from Lecture 2 we know that one way of finding det(A) is to get A into U and then simply find the product of all n pivots. So it seems like the cost for finding det(A) would just be a bit more than (1/3)n^3, perhaps (1/3)n^3 + n. I must be missing something here; any thoughts?

    • @raviteja9298
      @raviteja9298 6 років тому +1

      If I understand you correctly, I think the new term n is ignored because it's not significant compared to n^3 as n goes to infinity. I'm no expert and I'm not even sure if you are right. But if you are, and you are wondering why the n is ignored compared to n^3, i think this is the reason.

    • @gogolplex8576
      @gogolplex8576 5 років тому +4

      Weston Loucks you're right. When you calculate the upper triangular form and than multiply the pivots, the work scales with n^3.
      When he says, the effort is n!, he refers to a calculation with the laplace formular.

    • @taureandials1246
      @taureandials1246 5 років тому +1

      plug in some numbers and see how rational the outcomes seem

    • @Arycke
      @Arycke 5 років тому +2

      The lower term for large n almost vanishes so it isn't significant in Big O notation stuff. n^3 will dominate as n goes to infinity. The n! comes from a popular determinant based algorithm.

    • @piyushbhardwaj1795
      @piyushbhardwaj1795 10 місяців тому +1

      Yaa, I was thinking about it and, it came to me that, let's say we have 100 by 100 matrix. Now if we count a multiplication and subtraction as two operations then to reach a state where the first column of the matrix has only one non zero element and which is our pivot in 1st row, we do 100 subtractions for 99 rows as the first row remains unchanged, also, since we are multiplying all the elements of a row by some multiplier we also have 100 multiplications 99 times . So , the answer should be about 2*100*99 . Generalizing for n elements it comes to be 2*n*(n-1). And so the total operations will be 2*[(1/3)(n^3) - (1/2)(n^2)]
      PS: If we take into account the discreteness, total no of operations = 2*[n(n+1)(n-1)/3]

  • @alijoueizadeh8477
    @alijoueizadeh8477 5 років тому

    Thank you.

  • @yogeshpasari7400
    @yogeshpasari7400 6 років тому +3

    At 24:20 when he says that the multiplier goes directly into L, he means the negative right? If you keep a track of the operation on the left side, it inverts while bringing it to the right side.

    • @adityamitra9708
      @adityamitra9708 4 роки тому

      He defines operations as multiplication + subtractions so by definition the inverses have the positive multipliers.

  • @Cr4y7-AegisInquisitor
    @Cr4y7-AegisInquisitor 6 років тому

    thank you

  • @gauravjoshi9685
    @gauravjoshi9685 3 роки тому +2

    36:49 the precise answer would be n(n²-1)/3..

  • @aarifhussain1620
    @aarifhussain1620 4 роки тому +1

    now doubt sir you are the blessing for mathematicians and also for related to this field,i often enjoy your lectures in my vocations

  • @CrypticManu
    @CrypticManu Рік тому

    Man the chalk glides so smoothly across the black board, when I give tutorials at my university it's usually a huge pain in the ass to draw stuff on there because it just feels like shit haha

  • @rambohrynyk8897
    @rambohrynyk8897 Рік тому

    You teach so beautifully!

  • @renanwillianprado9187
    @renanwillianprado9187 2 роки тому

    I would say that the most efficient way for solving Ax=b would be solving A^t A x = A^t b (minimum square problem) using CG algorithm, due to my personal amazement with CG method. Pretty sure that it's not the case, but this method gives me chills. Hahaha

  • @user-ho4jl7tt4l
    @user-ho4jl7tt4l 2 роки тому

    感谢老爷子

  • @husseinhassan4960
    @husseinhassan4960 3 місяці тому

    Very clear thanks boss

  • @damnit258
    @damnit258 5 років тому

    Gilbret Strang !

  • @spoddie
    @spoddie Рік тому

    So glad there's a solution to the Sox Shoe Primacy Dilemma.

  • @neilclay5835
    @neilclay5835 Рік тому

    Brilliant.

  • @surajv1986
    @surajv1986 6 місяців тому

    Thanks a Lot, Sir & MIT for bringing out these excellent lecture series on Linear Algebra. May I know where one can find the corresponding problems & assignments for these lectures. Thanks.

    • @mitocw
      @mitocw  6 місяців тому +1

      The course materials are on MIT OpenCourseWare at: ocw.mit.edu/18-06S05. We also recommend you look at the OCW Scholar version of the course. It has more materials to help self-learners out: ocw.mit.edu/18-06SCF11. Best wishes on your studies!

    • @surajv1986
      @surajv1986 6 місяців тому

      @@mitocw Thanks for sharing the requested course contents

  • @BS-my2ky
    @BS-my2ky 6 місяців тому

    What is the insights between E vs L? Is the matrix L can be computed in-place using A's matrix memory?

  • @joshuamason2227
    @joshuamason2227 3 роки тому

    mindblowing

  • @jaybhanushali7115
    @jaybhanushali7115 5 років тому +3

    Can someone please explain how did he get 100^2 and not 100 x 2 (multiply+substract) operations at 33:22?

    • @vakie3250
      @vakie3250 4 роки тому +5

      If you scroll down you will find someone asked the same question.
      "It takes 100 operations to make (2,1) into 0, because the rows are 100 deep. Each of those elements changed as well.
      Then it’s done 98 more times to the rest of the rows."

  • @Issam102
    @Issam102 2 роки тому

    Yes in fact, the shoes-socks rule stands well in this science

  • @alperkaya8919
    @alperkaya8919 2 роки тому +1

    This python program shows that total sum is n cube divided by 3
    import matplotlib.pyplot as plt
    def r(n):
    sum = 0
    for i in range(1,n+1):
    sum = sum + i*i
    return sum
    def y_axes(n):
    lst = []
    for i in range(1, n+1):
    lst.append(r(i))
    return lst
    plt.plot([x for x in range(1,1001)], y_axes(1000))
    plt.show()

  • @TheUmangyadav
    @TheUmangyadav 6 років тому +3

    I=Lu

  • @aalokatharva4825
    @aalokatharva4825 4 роки тому +3

    How did transpose suddenly come into the picture?

  • @gurumayummadan2646
    @gurumayummadan2646 4 роки тому +7

    I really find it funny how towards the end of the lecture most students can't wait to go..😂

  • @dimitriosrallios7073
    @dimitriosrallios7073 Рік тому

    Is there a link where I can find some exercises to practice the concepts of the lectures?

    • @mitocw
      @mitocw  Рік тому

      Problem sets with solutions are available on MIT OpenCourseWare at: ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011. Best wishes on your studies!

  • @yuanyi827
    @yuanyi827 4 роки тому +2

    39:35,The cost of columns is about n^2 or 1/2n^2?I think it should be about 1/2n^2.

    • @anuragagarwal5480
      @anuragagarwal5480 3 роки тому

      Yes, I think so too. And to be precise it would be n*(n-1)/2

  • @christianlira1259
    @christianlira1259 Рік тому

    The educational lead up to 40:07 "We really have discussed the most fundamental algorithm for a system of equations."

  • @derekchan5026
    @derekchan5026 2 роки тому

    Can anyone tell me why can't we obtain the Lower triangular matrix L directly from the combined E which could just be derived from using gaussian elimination? Thanksss

  • @carlosraventosprieto2065
    @carlosraventosprieto2065 Рік тому

    Amazing

  • @yusufdenizcelik2480
    @yusufdenizcelik2480 29 днів тому

    What can I say, thank you!

  • @prashantkauthekar4121
    @prashantkauthekar4121 3 роки тому +1

    100× 100 matrix will take max 49950 steps of ellimination to form an Identity , if and only if -> all the elements are not equal 0 ; explanation -formula as per me 😁 i.e 100 × 100 matrix = 10000 elements , so 100 num of pivots , which are no to be changed and so remaining elements ;10000-100 = 99900 ; we are supposed to make either upper or a lower Tri. , So now we have to change 1/2 of the elements skipping the pivots i.e = 1/2 × 99900 = 49950 elements so 49950 steps 😎

  • @vinayak9088
    @vinayak9088 5 років тому

    why doesn't you guys upload the latest versions of lectures???

  • @chukwuebukaenyolu4147
    @chukwuebukaenyolu4147 5 років тому +1

    Can The number of operation for n by n matrix be n! ^2

  • @dxian780
    @dxian780 2 місяці тому +1

    Can anyone explain why the E21 in 11:16 is easy to invert? Did he teach about the skills in the previous lecture? Or the skill is taught in the readings?

    • @chenyang7898
      @chenyang7898 20 днів тому

      If there is -4, just put 4 in the sample place. It is kind of related to the ways of understanding matrix multiplication. Start with EA = U, this means you are doing one step of elimination to A, say step E21. The step is, you get row 2 minus 4 times row 1 (for A). This is what the second row of E, i.e., (-4, 1) means. Now you want to cancel this step E to get A = LU. You need to add back the 4 times row 1 to row 2. So the new (4, 1) means, get a changed row 2, add 4 times row 1 back.

  • @samitpaudel7886
    @samitpaudel7886 4 роки тому

    Feels like I know everything well in lecture, but as I sit to do the exercises I can't solve most of them. Is it worth continuing?

    • @JadeSync
      @JadeSync 4 роки тому +3

      Follow up these videos with corresponding chapters in his book - Introduction to Linear Algebra (by Gilbert Strand). Read the chapters as many times as required to be able to visualize the stuffs in your mind. 3blue1brown's Essence of Linear Algebra playlist on UA-cam helps with the visualization part.

  • @palash0810
    @palash0810 4 роки тому

    18:52 It says I'm subtracting rows from lower rows when we are multiplicating the two matrix.
    Was not able to get this.was able to simply multiply the matrix using combinations of columns and rows.

    • @cesars.semp.3119
      @cesars.semp.3119 3 роки тому

      That would give n^3 which is up for a factor of 3. Take into account that the elementary matrix are special matrices and there are plenty of 1s and 0s, so his way is more precisse.

  • @davidalexander829
    @davidalexander829 7 років тому

    It appears that I may have to purchase the course text. I thought that I might get by without it. Has anyone had success without the text? The lectures are pretty good.

    • @abhishekcherath2323
      @abhishekcherath2323 6 років тому

      I've not got the specific text for this course, but I have got the other book on linear algebra by him. Honestly it's great for problems and means I don't need to take exhaustive notes during lecture, which saves time.

  • @arukali319
    @arukali319 2 роки тому

    It is the best linear algebra lecture ever!!! But I do not get where the Identity matrix E31 comes from (at 16:47) ? Could anyone pls help me with this?

    • @RyanMartinRAM
      @RyanMartinRAM 7 місяців тому

      He picked an identity matrix for his example so that he wouldn't have to hand-write so many calculations on the board. Basically, he was just like "let's not waste time by writing a bunch of calculations, the middle one is the identity matrix."