Calculate area of the Yellow shaded circle | Semicircle | (Important Geometry skills explained)

Поділитися
Вставка
  • Опубліковано 2 лис 2024

КОМЕНТАРІ • 60

  • @math-physics3329
    @math-physics3329 Рік тому +2

    first view and like

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀

  • @wackojacko3962
    @wackojacko3962 Рік тому +2

    This problem is best one yet for making observations and following through with pts. of tangency...circle theorem...Pythagorean theorem...area of circle formula too find radius...right triangle properties...comparing equations...rationalizing fractions ...and calculating area of circle.
    Awesome way to start a day! 🙂

    • @PreMath
      @PreMath  Рік тому

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @thewolfdoctor761
    @thewolfdoctor761 Рік тому +4

    I created a triangle OPF, where F is on the line OQ, and PF is perpendicular to OQ. r is radius of yellow circle. So (2+r)^2 = (2-r)^2 + (2-r)^2. Solve for r , etc.

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀

  • @redfinance3403
    @redfinance3403 Рік тому +1

    Thanks for posting! Solved this one 😊 using the relationship : (2+r)^2 = 2(2-r)^2

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀

  • @HappyFamilyOnline
    @HappyFamilyOnline Рік тому +2

    Amazing👍
    Thanks for sharing 🌺

    • @PreMath
      @PreMath  Рік тому

      Thanks for visiting

  • @Abby-hi4sf
    @Abby-hi4sf Рік тому +2

    As usual, it is pleasant to see how you are teaching different methods!

    • @PreMath
      @PreMath  Рік тому

      Thanks for your feedback! Cheers! 😀

  • @marioalb9726
    @marioalb9726 Рік тому +2

    Blue Area= ½ π R² = 2π cm²
    R² = 4
    R = 2 cm
    Equalling over diagonal OA:
    R + r + r/cos45° = R / cos45°
    r (1 + 1/cos45°) = R (1/cos45° - 1)
    r = R (√2-1) / (1+√2)
    r = 0,343 cm
    Area = π r²
    Area = 0,37 cm² ( Solved √ )

  • @MrPaulc222
    @MrPaulc222 Рік тому

    Great explanation. I need to go through this again more slowly. Without the video I got as far as (2+r+r*root2)^2=8, but went off in a wrong direction after that.

  • @santiagoarosam430
    @santiagoarosam430 Рік тому

    Área azul =2Pi》Radio azul =2 》ABCD rectángulo de 4×2》Potencia de A respecto a la circunferencia azul =2×2 =r(1+sqrt2)(2+2sqrt2)》r=6-4sqrt2 》Área amarilla =68-48sqrt2 =0.117749
    Gracias y saludos.

  • @murdock5537
    @murdock5537 Рік тому +2

    Nice!
    (π/2)(OD)^2 = 2π → OD = 2 → OA = 2√2 → 2√2 - 2 = 2(√2 - 1) = r(√2 + 1) →
    r = 2(√2 - 1)/(√2 + 1) = 2(√2 - 1)^2 → πr^2 = 4π(17 - 12√2) ≈ 0,3699

    • @PreMath
      @PreMath  Рік тому +1

      Thank you! Cheers! 😀

  • @KAvi_YA666
    @KAvi_YA666 Рік тому +1

    Thanks for video.Good luck sir!!!!!!!!!!!!!

  • @Patrik6920
    @Patrik6920 Рік тому

    Nice to see an update to the earlier one... keep going....
    maby u should take that one down or write an disclamer
    (its the one with incorrect tangent assumptions)

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀

  • @marioalb9726
    @marioalb9726 Рік тому +1

    Blue Area= ½ π R² = 2π cm²
    R² = 4
    R = 2 cm
    Equalling over line OP:
    R + r = (R -r) / cos45°
    R + r = √2 (R-r)
    R + r = √2 . R - √2 . r
    r + √2 r = √2 R - R
    r ( 1+√2) = R ( √2 - 1)
    r = R (√2-1) / (1+√2)
    r = 0,343 cm
    Area = π r²
    Area = 0,37 cm² ( Solved √ )

  • @amitsinghbhadoriya6318
    @amitsinghbhadoriya6318 Рік тому +2

    Thanks 👍

  • @Shsbzyqn123
    @Shsbzyqn123 Рік тому

    Nice way of explanation

  • @musicsubicandcebu1774
    @musicsubicandcebu1774 Рік тому

    Draw tangent thru T then calculate radius of in-circle of resulting right triangle using (AT+AT - hypotenuse)/2

  • @pranavamali05
    @pranavamali05 Рік тому +1

    👌👌

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀
      You are awesome. Keep it up 👍

  • @kxllxr
    @kxllxr Рік тому

    I solved it in a different way. OT is a radius: pi*R^2/2=2 cm. I connected points O and Q. Then I calculated a diagonal of the square ODAQ using this formula: d=sqrt2*a=sqrt2*OQ. OQ is a radius as well as OT and equaled to 2 cm. So, OA is equalled to 2*sqrt2 cm. Then TA is OA-OT=2sqrt2-2 which is approximately 0.8284 cm. EPFA is a square, point P is a center of the yellow circle (2 tangent theorem, so EA=EF and EP=PF as radius). So, AP is a diagonal of EPFA and it equals to sqrt2*r. TP is a radius of the yellow square. AT=AP+TP= sqrt2*r+r=r(sqrt2+1)=0.8284 cm. r=0.8284/(sqrt2+1)=0.3431 cm. And the final step: A(yellow circle)=pi*r^2=3.14*0.1177=0.37 square cm.

  • @vidyadharjoshi5714
    @vidyadharjoshi5714 Рік тому

    DO = 2. Let PT = r. AP = r*sqrt2. AT = r + r*sqrt2 = 2*sqrt2 - 2. r = 2/(3+2*sqrt2) = 0.343. Yellow Area = 0.37

  • @redeyexxx1841
    @redeyexxx1841 Рік тому

    Is there any way to prove that the linr joining the 2 centres passes through point A??

  • @unknownidentity2846
    @unknownidentity2846 Рік тому

    The line through O and Q and the line through E and P intersect at point R. Then the triangle OPR is a right triangle and we can use the Pythagorean Theorem in the following way:
    (2−r)² + (2−r)² = (2+r)²
    2(2−r)² = (2+r)²
    √2(2 − r) = 2 + r # r < 2 ⇒ 2 − r > 0 and 2 + r > 0
    2√2 − r√2 = 2 + r
    2√2 − 2 = r + r√2
    2(√2 − 1) = r(√2 + 1)
    r = 2(√2 − 1)/(√2 + 1)
    r = 2(√2 − 1)²
    r = 6 − 4√2

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀

  • @raya.pawley3563
    @raya.pawley3563 10 місяців тому

    Thank you

  • @soli9mana-soli4953
    @soli9mana-soli4953 Рік тому

    I try to solve considering the diagonal of AQOD square that is 2√ 2) and that one of AFPE square that is r√ 2, then
    r√ 2 = 2√ 2 - 2 - r
    r = (2√ 2 - 2)/(√ 2 + 1)

  • @ybodoN
    @ybodoN Рік тому +2

    Generalized: Y = 2B (17 − 12√2) where Y is the area of the yellow circle and B is the area of the blue semicircle.

    • @PreMath
      @PreMath  Рік тому

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @williamwingo4740
    @williamwingo4740 Рік тому

    Nothing new to add this time: did it pretty much the same way, right down to rationalizing the denominator. Maybe we're beginning to think alike.... 🤠

  • @mohanramachandran4550
    @mohanramachandran4550 Рік тому +1

    πR² ÷ 2. = 2π²
    R. = 2 cm
    Diameter of the Rectangle = 2 * √2
    Yellow circle area = ( 2 √2 -- 2 )
    Radius of yellow circle = r
    r = (2√2-2) ÷ (1+√2) = 0.34314575
    Area of the Yellow circle = πr²
    Area = Π × ( 0.34314575)²
    Area = 0.36991941250

    • @PreMath
      @PreMath  Рік тому

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @marioalb9726
    @marioalb9726 Рік тому +1

    Blue Area= ½ π R² = 2π cm²
    R² = 4
    R = 2 cm
    Pitagorean theorem:
    (R+r)² = 2.(R-r)²
    R²+2Rr+r² = 2 . (R²-2Rr+r²)
    R²+2Rr+r² = 2R²- 4Rr + 2r²
    r²- 6Rr +R² = 0
    r²- 12r + 4 = 0
    r = 0,343 cm
    Area = π r²
    Area = 0,37 cm² ( Solved √ )

  • @devondevon4366
    @devondevon4366 Рік тому

    0.376 cm^2 answer
    The circle's radius is 2 since its area is 4 pi (twice the semi-circle.)
    Let's label the yellow circle's center r. From the center
    of this circle to A is the hypotenuse, h. h^2 = r^^2 + r^2 (Pythagorean)
    Hence h^2 = 2
    h= sqrt 2r^2 or 1.41 r
    The distance from thethe center of the yellow circle to where its touches the blue semi-circle is also r. Hence the distance from A to where it touches the blue is
    2.41 (1.41 r + r). Hence the distance from that to the center of the blue cirlce is 2.41 r + 2 . Construct a triangle using 2.41r + 2 as the hypotenuse; hence
    the other two sides are 2 and 2 ( the cirlce's radius)
    Using Pythagorean
    (2 + 2.41 r )^2 = 2^2 + 2^2
    5.8081 r^2 + 9.64 r +4 =8
    5.8081 r^2 + 9.64 r -4 = 0
    r = .34376
    Circle area hence is 0.376 cm^2

  • @quigonkenny
    @quigonkenny 8 місяців тому

    Let R be the radius of the large blue semicircle and r be the radius of the small yellow circle.
    As T is tangent both to Semicircle O and Circle P, points O, T, P, and A are colinear. Therefore ∆AFP and ∆AQO are similar.
    Triangle ∆AQO:
    a² + b² = c²
    R² + R² = OA²
    OA² = 2R²
    OA = √2R² = R√2
    OA = OT + TA
    R√2 = R + TA
    TA = R√2 - R = R(√2 - 1) ---- (1)
    Triangle ∆AFP:
    PA/AF = OA/AQ
    PA/r = R√2/R = √2
    PA = r√2
    TA = TP + PA
    TA= r + r√2 = r(1+√2) ---- (2)
    r(1+√2) = R(√2 -1)
    r = R(√2 -1)/(1+√2) ---- (3)
    Semicircle O:
    A = πR²/2
    2π = (π/2)R²
    R² = 4
    R = 2
    Circle P:
    r = R(√2 -1)/(1+√2)
    r = 2(√2 -1)/(1+√2)
    r = 2(√2 -1)(1-√2)/(1+√2)(1-√2)
    r = 2(√2 -1)(1-√2)/(1-2)
    r = 2(1-√2)(1-√2)
    r = 2(1 - 2√2 + 2)
    r = 2(3-2√2)
    A = πr² = π(2(3-2√2))²
    A = 4π(9-12√2+8)
    A = 4π(17-12√2) ≈ 0.37 cm²

  • @prollysine
    @prollysine Рік тому

    Hi, large circle radius R=2 cm, let r=small circle radius, large circle center point to square corner distance with the circular R, r,: R+r+sqrt(2)*r = sqrt(2)*R --> 2+r+sqrt(2)*r = sqrt(2)*2 , r*(1+sqrt(2))=sqrt(2)*2-2 , r=(sqrt(2)*2-2)/(1+sqrt(2) =~ 0,3431 cm , small circle area = r^2*pi , T = (0,3431^2)*pi = 0,3699 cm^2 , ok ...

  • @gelbkehlchen
    @gelbkehlchen Рік тому +1

    Solution:
    R = radius of the blue circle,
    r = radius of the yellow circle.
    It shall be:
    π*R²/2 = 2π |*2/π ⟹
    R² = 4 |√() ⟹
    R = 2 ⟹
    Pythagoras:
    (R-r)²+(R-r)² = (R+r)² ⟹
    (2-r)²+(2-r)² = (2+r)² ⟹
    4-4r+r²+4-4r+r² = 4+4r+r² |-4-4r-r² ⟹
    r²-12r+4 = 0 |p-q-formula ⟹
    r1/2 = 6±√(36-4) = 6±√32 = 6±4*√2 ⟹
    r1 = 6+4*√2 > R = 2 [that cannot be] and
    r2 = 6-4*√2 ≈ 0,3431 < R = 2 [that is o.k.] ⟹
    area of the yellow circle = π*r2² = π*(6-4*√2)² = π*(36-48*√2+32)
    = π*(68-48*√2) ≈ 0,3699[cm²]

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀

  • @vierinkivi
    @vierinkivi Рік тому

    Pisteestä A sinisen täydennetyn ympyrän ulkolaitaan 2√2+2,keltaisen ulkolaitaan 2√2-2.
    Keltaisen ala ((2√2-2)/(2√2+2))^2*4π

  • @mohamedgamal-ze1gb
    @mohamedgamal-ze1gb Рік тому

    سؤال إذا كانت مساحة الدائرة تساوى ٢باى فنصف القطر يساوى جذر ٢ باى وليس ٢ ارجو التوضيح

    • @PreMath
      @PreMath  Рік тому

      معطى: مساحة نصف الدائرة 2pi. لذا ، مساحة الدائرة الكاملة ستكون 4 نقطة في البوصة.
      هتافات

    • @mohamedgamal-ze1gb
      @mohamedgamal-ze1gb Рік тому

      @@PreMath اسف عرفتها بعد كتابة التعليق وشكرا على التوضيح

  • @Algebronic_Animations24
    @Algebronic_Animations24 Рік тому

    7:26 why OA is not equal to only 2+ r√2

  • @devondevon4366
    @devondevon4366 Рік тому

    0.376 cm^2

  • @misterenter-iz7rz
    @misterenter-iz7rz Рік тому +1

    First note that 2 is the radius of the large circle, let r be the radius of the small circle, then 2root2=2+2r, r=root 2-1, the,answer is (root 2-1)^2pi=(3-2root2)pi=0.539 approximately. 😊
    Oh, I make a mistake, 2root2=2+r+(root 2)r, so r=(2root 2-2)/(1+root 2)=(2root2-2)(root2-1)=2(root2-1)^2=2(3-2root2), the answer should be 4(3-2root 2)^2pi=4(17-12root2)pi=0.37 approximately. 😅

    • @krislegends
      @krislegends Рік тому +1

      You can't do 2r, because the radius doesn't extend all the way to

    • @PreMath
      @PreMath  Рік тому

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @thomakondaciu6417
    @thomakondaciu6417 Рік тому

    A=0.36×3.14

  • @adgf1x
    @adgf1x Рік тому

    Ar small circle=pi/2when pi =22/7

  • @marioalb9726
    @marioalb9726 Рік тому +2

    Blue Area= ½ π R² = 2π cm²
    R² = 4
    R = 2 cm
    Equalling over diagonal AT :
    r + r/cos45° = R/cos45° - R
    r + √2 r = √2 R - R
    r ( 1+√2) = R ( √2 - 1)
    r = R (√2-1) / (1+√2)
    r = 0,343 cm
    Area = π r²
    Area = 0,37 cm² ( Solved √ )

    • @PreMath
      @PreMath  Рік тому

      Thank you! Cheers! 😀