Solving A Non-Standard Equation

Поділитися
Вставка
  • Опубліковано 14 січ 2025

КОМЕНТАРІ • 53

  • @kappasphere
    @kappasphere Рік тому +15

    One thing that's been bugging me is that 1/2 - ln(sqrt(2)/2) can be simplified to 1/2 - ln(2^0.5) + ln(2) = 1/2 - 1/2 ln(2) + ln(2) = 1/2 (1 + ln(2))

    • @usdescartes
      @usdescartes Рік тому +2

      Better than that, even. 1/2 (1 + ln 2) = 1/2 (ln e + ln 2) = 1/2 ln 2e = ln√(2e) That's actually kinda nice-looking!

  • @xyz.ijk.
    @xyz.ijk. Рік тому +1

    That was excellent. Thank you. I may have some catch-up work to do, but overall I understood where you were going.

  • @Vemu
    @Vemu Рік тому +16

    What's the program you're using for writing?

  • @premkumarsr4021
    @premkumarsr4021 Рік тому

    Beautiful. Lovely. No words to express my happiness

  • @RashmiRay-c1y
    @RashmiRay-c1y 11 місяців тому

    Squaring both sides and following some straightforward manipulations, we can write x = -a -1/2 W(-2e^(-2a)), where W is the Lambert W function. For a less than roughly .7, there won't be any real solutions. But for a =1, W_(-1) gives x=0 and W_(0) gives x = -.8. Thus we will expect 2 solutions.

  • @popitripodi573
    @popitripodi573 Рік тому +1

    Very interesting equation ❤❤❤❤

  • @yoav613
    @yoav613 Рік тому +3

    Nice! I think it is more simple to solve this if you notice that this eq is: e^(2x)-x=a, then using simple calc we see that the function e^(2x)-x has 1 minimum point at (-0.5ln2, 0.5(1+ln2)). Therfore for tangent a=0.5(1+ln2),and if a>0.5(1+ln2) there are 2 intersection points and ifa

    • @leif1075
      @leif1075 Рік тому

      What about other solutions if a equals 1 x can equal zero?

  • @bassem.al-ashour
    @bassem.al-ashour Рік тому

    When squatting both sides, you get
    e^2x=x+a
    (×+a)=e^2×......divide both sides by e^2x to get
    (x+a)e^(-2×)=1.....multiply both sides by e^(-2a) to get
    (×+a)e^(-2x-2a)=e^(-2a)
    (×+a)e^[-2(x+a)]=e^(-2a)......multiply both sides by -2 to get
    -2(×+a)e^[-2(x+a)]=-2e^(-2a)......Lumbert both sides to get
    -2(×+a)=W(-2e^(-2a))
    x+a=-[W(-2e^(-2a))]/2
    x=-[W(2e^(-2a))]/2-a

  • @AbdulRahmanAttari
    @AbdulRahmanAttari Рік тому

    ❤❤

  • @ardiris2715
    @ardiris2715 Рік тому +1

    ChatGPT suggested the bisection route, and then quit.
    (:

  • @ilanbar1970
    @ilanbar1970 11 місяців тому

    Nice!

  • @attila3028
    @attila3028 Рік тому

    if you solved what is x in terms of a

  • @scottleung9587
    @scottleung9587 Рік тому +1

    Cool!

  • @jonasvuillemin9412
    @jonasvuillemin9412 Рік тому +2

    U didn’t solve it, u have 2 other possibilty depending on the value of a and btw u didn’t prove that u can derivate g

  • @barakathaider6333
    @barakathaider6333 Рік тому

    👍

  • @srividhyamoorthy761
    @srividhyamoorthy761 Рік тому +1

    Ooh interesting
    Edit very interesting

  • @talberger4305
    @talberger4305 Рік тому +12

    X=-0.5×W(-2e^(-2a))-a

  • @oakpope
    @oakpope Рік тому +1

    And so, you didn't solve the equation.

  • @sphakamisozondi
    @sphakamisozondi Рік тому

    This is a delicious problem. Where can we get these types of math problems?

  • @ParaNozek
    @ParaNozek Рік тому

    ln(2e)/2

  • @leesweets4110
    @leesweets4110 Рік тому

    Cant find books in English? HA, aint that the truth. You cant find videos on youtube in English, either, really. You either have a heavy accent or youre literally speaking Hindi or Japanese. The most advanced mathematics videos in English on youtube only go up to the addition of fractions.

  • @allanmarder456
    @allanmarder456 Рік тому +2

    The solution using the Lambert W function is x= -[W(-2/(e^(2a)) +2a]/2. . To prove this, first square the original equation and get e^(2x) -x = a. Now let z be such that z*(e^z) = -2/(e^(2a))
    Then x= -[z+2a]/2 So e^2x = e^(-[z+2a]) = e^(1/((e^z)*(e^2a)) =(1/e^z) * (z*(e^z)/(-2) = -z/2. Next subtract x and get = -z/2 - (-(z+2a/2)) = -z/2 +z/2 + a. =a. So for example if e^x = sqrt(x+2).
    we get W(-2/(e^4)) = =-.038052 and -4.895084 ( 2 answers). and x= -(.038052+4)/2 = - 1.98097 and x = - (-4.895084+4)/2 =.44754. Checking ( to 4 decimals) e^(-1.98097)=.1379 sqrt(-1.98097+2) =.1379. e^.44754 =1.5644 sqrt(2+.44754) = 1.5644.

    • @guystuart4095
      @guystuart4095 Рік тому

      The number of parentheses in your expression for x do not match up. There are three “(“ and just two “)”.

    • @allanmarder456
      @allanmarder456 Рік тому

      @@guystuart4095 Corrected

    • @guystuart4095
      @guystuart4095 Рік тому

      I am trying to learn more about the Lambert W function. Can you give me a hint on why you chose z such that z*e^z = -2/e^2a. I am kind of stuck on this point. Just a hint? Thanks, Guy

    • @guystuart4095
      @guystuart4095 Рік тому

      I figured another way to find Lambert W function. Square both sides of original equation and then div both sides by e^2x. Define y=x+a and manipulate until you have -2y e^-2y = -2e^-2a. Take the W function of both sides and you are home free.

    • @allanmarder456
      @allanmarder456 Рік тому

      @@guystuart4095 Thanks for your reply. There are many different ways to manipulate an equation to make it work with the Lambert function.
      If you search online you can find many examples of types of equations that can be solved via Lambert. As you have shown sometimes
      it's just a question of manipulating things until you get what you want. That's what I do. Again thanks for your comment.