How to find "x" | Oxford entrance exam question

Поділитися
Вставка
  • Опубліковано 29 січ 2025

КОМЕНТАРІ • 27

  • @АндрейВолков-ч4ы
    @АндрейВолков-ч4ы 6 днів тому +21

    Very complicated:
    e^(x+pi)=pi^(x+e) => ln(e^(x+pi))=ln(pi^(x+e))
    => (x+pi)=(x+e)ln(pi) => x(1-ln(pi))=e•ln(pi)-pi
    => x=(e•ln(pi)-pi)/(1-ln(pi))
    That's all.

  • @JoeCochran-t1d
    @JoeCochran-t1d 6 днів тому +9

    I agree with comment A. Take the ln both sides first.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  5 днів тому

      Alright Boss 😊

    • @jasonstorm-wm2vd
      @jasonstorm-wm2vd День тому

      It doesn't really matter when you do it. Personally I found it easiest to take the log after simplifying to (e/π)^x=π^e/e^π since there is then a single instance of x on the left side and the right side is a constant.

  • @LeLibossien
    @LeLibossien 5 днів тому +16

    What a long ride! This equation could be solved in 5 lines if you take log on both sides right from the begining including special care for the existence of the log. Even it is not bad to play with expontial properties I am still asking why doing complicated when it is simple ???

  • @dragoscalin4883
    @dragoscalin4883 6 днів тому +2

    Foarte frumoasă și interesantă ecuația, respectiv forma ei de prezentare și algoritmul de rezolvare. Felicitări! Sănătate și succes în continuare.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  5 днів тому

      Bundle of thanks for praising and sharing your precious feedback 😌😊👍

  • @freddyalvaradamaranon304
    @freddyalvaradamaranon304 5 днів тому +1

    Muy interesante video muchas gracias por compartir tan buena y didáctica explicación. 😊❤😊.

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  5 днів тому +1

      Many many Thanks 👍🤗😍

    • @MathBeast.channel-l9i
      @MathBeast.channel-l9i  5 днів тому +1

      Thanks for sharing your precious feedback.
      It means a lot for us.😍

    • @freddyalvaradamaranon304
      @freddyalvaradamaranon304 5 днів тому

      @@MathBeast.channel-l9i las gracias siempre a ustedes, estos valiosos videos le servirán a mi hija a continuar sus estudios universitarios.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 5 днів тому +2

    e^{x+x ➖ }+{pi+pi ➖ }=e^{x^2+pi^4}=e^pi^4x^2 e^pi^2^2x^2 e^pi^2^1x^1 e^pi^2^1^x (e x ➖ 2pie x+1). pi^{x+x ➖ }+{e+e ➖ }=pi^{x^2+e^2}=pi^e^2x^2 (pix ➖ 2epix+2).

  • @herbertklumpp2969
    @herbertklumpp2969 День тому

    You only have to use ln:
    X+pi= (x+e)* ln( pi)
    X( 1- ln(pi))= e* ln(pi) -pi
    Division by. (1- ln(pi)) finished

  • @LanTo-sj5nt
    @LanTo-sj5nt 3 дні тому

    Graph
    y = e^x + pi
    y = pi^x + e
    Solution: x = e × ln(pi) - pi / 1 - ln(pi)
    Intersection with the x-axis: Does not exist
    Domain: -infinty

  • @LanTo-sj5nt
    @LanTo-sj5nt 3 дні тому +1

    e^x + pi = pi^x + e
    x + pi = ln(pi)x + e × ln(pi)
    x - ln(pi)x = e × ln(pi) - pi
    (1 - ln(pi))x = e × ln(pi) - pi
    x = e × ln(pi) - pi / 1 - ln(pi)
    x ≈ 0.206552

  • @marceliusmartirosianas6104
    @marceliusmartirosianas6104 11 годин тому +1

    ePix-EPix=1]=X-X=X/X=X-1=1 X=1:

  • @Chris_5318
    @Chris_5318 2 дні тому +2

    It seems that you only do this because you are obsessed with the act of writing.

  • @cyruschang1904
    @cyruschang1904 День тому

    x + π = (x + e)lnπ
    x = (elnπ - π)/(1 - lnπ)

  • @AndreTewen
    @AndreTewen 5 днів тому

    In C the answers are :
    z = (e.ln(pi) - pi)/1 - ln(pi)
    + i.2k.pi/ 1- ln(pi), k € Z.
    For k = 0 we find the real answer.