A System for Automated Vehicle Damage Localization and Severity Estimation Using Deep Learning

Поділитися
Вставка
  • Опубліковано 12 гру 2024
  • A System for Automated Vehicle Damage Localization and Severity Estimation Using Deep Learning | Python Final Year IEEE Machine Learning Project 2024 - 2025.
    🛒Buy Link: bit.ly/3ZYqxDD
    (or)
    To buy this project in ONLINE, Contact:
    🔗Email: jpinfotechprojects@gmail.com,
    🌐Website: www.jpinfotech...
    📌Project Title: A System for Automated Vehicle Damage Localization and Severity Estimation Using Deep Learning.
    📌Our Proposed Project Title: Smart Car Damage Detection and Analysis Using Deep Learning with YoloV8.
    💡Implementation: Python.
    🔬Algorithm / Model Used: YOLOv8 Architecture.
    🌐Web Framework: Flask.
    🖥️Frontend: HTML, CSS, JavaScript.
    💰Cost (In Indian Rupees): Rs.5000/
    📌IEEE Base paper Abstract:
    Vehicle damage localization and severity estimation is essential to post-accident assessments, with a traditional process taking an average of seven days and requiring substantial work from both customers and dealers. Towards improving this process, we propose an end-to-end system which inputs a set of user-acquired photographs of a vehicle after an accident and outputs a damage assessment report including the set of damaged parts and the type and size of the damage for each part. The system is composed of three deep learning modules: a model to identify whether a vehicle is present in the image, a model to localize the vehicle parts in the image, and a model to localize the damage in the image. We demonstrate the effectiveness of each module by evaluating them on labeled datasets containing images of vehicles after an accident, some collected by the OE (Original Equipment) Insured Fleet and some acquired by users of the OEM (Original Equipment Manufacturer) mobile application. We also describe how the modules fit together with a post-processing step to aggregate outputs between the different modules across multiple user-acquired views of the accident. Our approach demonstrates the potential for an accurate and automated vehicle damage estimation system to support a substantially more efficient vehicle damage assessment process.
    📌REFERENCE:
    Yuntao Ma , Hiva Ghanbari, Tianyuan Huang, Jeremy Irvin, Oliver Brady, Sofian Zalouk, Hao Sheng, Andrew Ng, Ram Rajagopal , Member, IEEE, and Mayur Narsude, “A System for Automated Vehicle Damage Localization and Severity Estimation Using Deep Learning”, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 6, JUNE 2024.
    #python #pythonprojects #machinelearningproject #cardamage #yolo #yolov8 #aiproject #aiprojects #pythonprogramming #pythonprojectforbeginners #pythonprojectideas #pythonmachinelearning #machinelearning #machinelearningpython #finalyearproject #ieeeprojects #finalyearprojects #datascience #datascienceproject #artificialintelligenceproject #projects #deeplearning #deeplearningproject #computerscienceproject #deeplearningprojects #majorprojects #academicprojects #majorproject #computervision #imageprocessingpython #imageprocessing #flask

КОМЕНТАРІ •