The Hessian matrix | Multivariable calculus | Khan Academy

Поділитися
Вставка
  • Опубліковано 28 лис 2024

КОМЕНТАРІ •

  • @francescomura3228
    @francescomura3228 2 роки тому +47

    if anyone is wondering why the mixed derivates are the same: it's Schwarz's theorem.

  • @balajilakshminarayan1593
    @balajilakshminarayan1593 3 роки тому +10

    Grant

    • @davuluri4395
      @davuluri4395 24 дні тому

      thats 3blue1brown, wrong channel

  • @shcraft.3683
    @shcraft.3683 7 років тому +201

    You have the same voice as the guy on 3blue1brown

    • @pressgreen
      @pressgreen 6 років тому +20

      @David Beyer Was looking for this comment. thanks lol

    • @SonLe-mk4sq
      @SonLe-mk4sq 4 роки тому +6

      I noticed that too... then I checked who he was.

    • @Luis-kd2te
      @Luis-kd2te 4 роки тому +5

      No wonder this made sense to me XD He is a blessing

    • @samiloom8565
      @samiloom8565 Рік тому +14

      He is the sane guy

    • @danwigodsky2612
      @danwigodsky2612 3 місяці тому +2

      Grant Sanderson worked for Khan Academy.

  • @haiarpyzargarian6714
    @haiarpyzargarian6714 4 роки тому +7

    Thank you so much, here I get much more infornation in one day than in university in a month)))

  • @therealbean4372
    @therealbean4372 4 роки тому +12

    Hey Grant, Love your video's from Khan and 3Blue1Brown!

  • @debralegorreta1375
    @debralegorreta1375 4 роки тому +11

    What does the Hessian matrix represent geometrically? In particular, what does the determinant of the Hessian matrix measure?

    • @lernenlernenlernen4707
      @lernenlernenlernen4707 4 роки тому +1

      That's really a good question! Sadly I can't answer it now, but I'll use it as an inspiration to look into it, when I have the time. I think the best strategy to approach this problem is to calculate the determinant for some 2 or 3 dimensional functions and then play around with different values for x,y and z.

    • @chiemxerxobi
      @chiemxerxobi Місяць тому

      pretty sure the determinant of anything kind of represents the dimension-specific area of said thing. So the determinant of the hessian matrix might have something to do with the area of the rate of the rate of change of that particular function. I might just be spitting some hot shi tho lol

  • @AJ-et3vf
    @AJ-et3vf 2 роки тому +3

    Awesome video! Thank you! And wow! It's 3Blue1Brown's voice doing this video!

  • @siyuzhang7867
    @siyuzhang7867 3 роки тому +2

    the moment I clicked on this link, oh this is the 3blue1brown guy!

  • @firstkaransingh
    @firstkaransingh Рік тому

    Awesome guy.... Mr Sanderson.

  • @MohamedJama-zt7tk
    @MohamedJama-zt7tk Рік тому

    I love u Khan!! u save me today

  • @catouncormery2995
    @catouncormery2995 8 років тому +5

    you are perfect, thanks for you videos, and you're fanny mood :)

  • @jasonsoto3566
    @jasonsoto3566 6 років тому +1

    Yo Khan Academy, thank you for making these videos. They are a real lifesaves at times ^w^

  • @user-mk3yl5fe4m
    @user-mk3yl5fe4m 3 роки тому +4

    So clear and helpful!

  • @AJSLego
    @AJSLego 6 років тому +33

    3 blue one brown?

  • @MegaBdboy
    @MegaBdboy 7 років тому +45

    DUDE and why don't you tell me how to find extrema points with this !!!

    • @robertwilsoniii2048
      @robertwilsoniii2048 6 років тому +9

      Gamer Sparta You find the eigenvalues of this matrix after solving the differential equation that optimizes. Find out if this matrix is positive definite, negative definite or semi definite.

  • @BayesianBrain
    @BayesianBrain 6 років тому +5

    Can someone explain why the ideal learning rate for 2 or more dimensions in the gradient descent algorithm is the inverse of the Hessian (matrix of second partial derivatives)?

    • @proximalfuturism
      @proximalfuturism 5 років тому +3

      This guy explains it well: medium.com/@ranjeettate/learning-rate-in-gradient-descent-and-second-derivatives-632137dad3b5 . Intuitively, using the first derivative gives us the change in loss w.r.t x as a straight line; using second derivatives gives us information about the curvature of the loss function.

  • @phuocsangnguyen6411
    @phuocsangnguyen6411 Рік тому

    thank you so much ! so helpful

  • @anamitrasingha6362
    @anamitrasingha6362 4 роки тому

    So is this Hessian matrix is valid only for scalar valued functions right? If my intuition is correct then for a vector valued function of maybe 4 components, would there be 4 Hessian matrices?

  • @hussainbhavnagarwala2596
    @hussainbhavnagarwala2596 Рік тому

    what if the output of function f was a vector of 3 rows instead of a single expression. How would the hessian change?

  • @im-alida
    @im-alida 7 років тому +2

    awesome! :-)
    i have a question
    what kind of tools are you using when you work??
    I really wanna get that blackboard tool :-) thx in advance

  • @mikhaelhalbar417
    @mikhaelhalbar417 Рік тому +2

    Is this the 3blue1brown guy?

  • @KaloqnBankov
    @KaloqnBankov 8 років тому +4

    What if the function is a matrix itself? The Hessian matrix will be a matrix of matrices?

  • @wunanzeng7051
    @wunanzeng7051 4 роки тому

    Do you guys know which lecture/series/playlist is this video from? Please let me know! Thanks!

    • @chaoticcubes4929
      @chaoticcubes4929 4 роки тому

      Wunan Zeng khan academy multivariable calculus playlist

  • @evenamathias6355
    @evenamathias6355 Місяць тому

    What is the point of finding H, why do we use it? Is it some sort of solution or something, i dont reallly get it

  • @brandomiranda6703
    @brandomiranda6703 6 років тому +4

    When will the diagonal not be symmetric?

    • @ethanbooth1174
      @ethanbooth1174 4 роки тому +1

      when the function is not continuous

    • @joluju2375
      @joluju2375 3 роки тому +1

      @@ethanbooth1174 Sure of that ? I mean, for the second mixed derivatives to be different, they have to exist.

  • @avibank
    @avibank 7 років тому +4

    Ah, so this is where the formula for the discrimination comes from.We can see that taking the determinant of the Hessian gives the formula for the discriminant.I know it works for R^2. Will verify for R^3 and R^n as an exercise.Thanks!

  • @ConradOPrice
    @ConradOPrice 5 років тому +10

    0:00 - 0:06 sorry what? Don't think I've ever been confused so quickly in a tutorial.

  • @나누나누-h6t
    @나누나누-h6t 8 років тому +3

    how do i know which channel of khan academy is for this video?

    • @emilybarnard404
      @emilybarnard404 8 років тому +5

      You can find this video on the Khan Academy website by using the search bar at the top of the screen and typing in "hessian."
      Here is the link:
      www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-derivatives/quadratic-approximations/v/the-hessian-matrix

  • @mdehsanullahkhan1461
    @mdehsanullahkhan1461 3 роки тому

    Thank you for the amazing explanation

  • @rubyemes
    @rubyemes Рік тому +1

    Sal, if I have 1 equation and 6 independent variables, my partial first derivatives is a vector with 6 terms. If I follow, the Hessian will be a 6x6 matrix. Is that correct? Thanks!!! I contribute to you as your program and platform makes an amazing contribution!

    • @jyly261
      @jyly261 Рік тому +2

      I know it's not 3blue1Brown answering but you're right.

    • @rubyemes
      @rubyemes Рік тому

      @@jyly261 thanks for confirming

  • @subashsubashsubash
    @subashsubashsubash 6 років тому

    Thank you sir, this video has given me a good idea

  • @feynmath
    @feynmath 6 років тому +4

    i think in place of hessian you actually have mentioned hessian transpose!

  • @jermaineoneal123
    @jermaineoneal123 6 років тому

    Thank you!

  • @gogl0l386
    @gogl0l386 6 років тому +1

    Is there a vector form of the multivariable Taylor series?

    • @robertwilsoniii2048
      @robertwilsoniii2048 2 роки тому

      I'm pretty sure that's the taylor expansion using the jacobian for derivatives.

  • @moonisal
    @moonisal 6 років тому +1

    고맙습니다

  • @abdulkadercerkezi1448
    @abdulkadercerkezi1448 2 роки тому +1

    hey, you are 3blue1brown?

  • @OverLordOfDa3rdWorld
    @OverLordOfDa3rdWorld 5 років тому

    Wow, amazing. Thank you!

  • @ricosrealm
    @ricosrealm Рік тому

    Is this 3blue1brown as the lecturer?

  • @engineeryadav7323
    @engineeryadav7323 3 роки тому

    is he 3 blue 1 brown ???

  • @epicfudge9817
    @epicfudge9817 2 роки тому

    Is this the same guy as 3 blue 1 brown?

  • @shantanu_bhattacharya
    @shantanu_bhattacharya 6 років тому +2

    Good day, I was wondering whether you know any python library that has implemented second order gradient descent with hessian error matrix. If you can point me to the right direction, it would be very helpful. Thanks in advance, Kind regards
    Shantanu

  • @David-xq3bg
    @David-xq3bg 6 років тому +2

    When are Fxy and Fyx not equal?

    • @matakos22
      @matakos22 6 років тому

      When F is not C2

    • @joluju2375
      @joluju2375 3 роки тому

      @@matakos22 Sorry, I don't know what C2 means ... do you have an example please ?

    • @matakos22
      @matakos22 3 роки тому +2

      @@joluju2375 Continuously differentiable functions are sometimes said to be of class C1. A function is of class C2 if the first and second derivative of the function both exist and are continuous. More generally, a function is said to be of class Ck if the first k derivatives f′(x), f′′(x), ..., f (k)(x) all exist and are continuous. If derivatives f (n) exist for all positive integers n, the function is smooth or equivalently, of class C∞.

    • @joluju2375
      @joluju2375 3 роки тому

      @@matakos22 Thanks. So, for Fxy and Fyx not to be equal, they have to exist. Then, if F is not C2 and Fxy and Fyx exist, it means that Fxy or Fyx is not continuous. Right ?

    • @matakos22
      @matakos22 3 роки тому

      @@joluju2375 Yes, or they could also be undefined

  • @hamandresfr
    @hamandresfr 11 місяців тому

    The video is in fundraiser but the video is from 3b1b hehh? 🧐🧐

  • @catsexe6932
    @catsexe6932 Рік тому

    And the rest of the video?

  • @michaelroditis1952
    @michaelroditis1952 3 роки тому

    when can fxy!=fyx ?

  • @twistedlot
    @twistedlot 6 років тому +2

    in honor of Otto Hesse

    • @klam77
      @klam77 3 роки тому

      youre related?

  • @paulolaranjeira9361
    @paulolaranjeira9361 Рік тому

    Aren't you the guy of 3 Blue 1 Brown?

  • @zixiaoxu977
    @zixiaoxu977 6 років тому

    interesting

  • @AdanLoeraRuiz
    @AdanLoeraRuiz Місяць тому

    I dont get it

  • @aaryagohil7000
    @aaryagohil7000 6 років тому

    fitz?

  • @heylol33
    @heylol33 6 років тому

    Genius.

  • @samueljeromillson
    @samueljeromillson Рік тому +1

    Dude I’m in 8th grade doing calc 1 and I already understand this.

  • @hamzabelmengaa2504
    @hamzabelmengaa2504 6 років тому

    What about fonction whitch have three variable 😩

  • @maybeinactive
    @maybeinactive Рік тому

    Grant???

  • @rishavjain5087
    @rishavjain5087 2 роки тому

    I thought i clicked 3b1b's video

  • @montagne2198
    @montagne2198 8 років тому +26

    Came for Neo and Morpheus, left disappointed.

  • @darkseeven
    @darkseeven 5 років тому +2

    go check 3b1b, sound just like you, he is a cool guy

    • @joel.ds.m
      @joel.ds.m 5 років тому +1

      It's the same guy 😂

    • @darkseeven
      @darkseeven 5 років тому

      Joel McAllister i know:))

  • @SubhenduMallick-lp1fo
    @SubhenduMallick-lp1fo 11 місяців тому +2

    Jay Shree Ram

  • @Eng_Hamza_kw
    @Eng_Hamza_kw 2 роки тому

    👌👌👌👌

  • @itskelvinn
    @itskelvinn 7 років тому

    If you differntiate x first, then y, shouldnt it be "dxdy" ? why do you keep putting it backwards

    • @joshuat6124
      @joshuat6124 7 років тому +1

      No, the way he does it is notationally correct. Oh course, you are free to write things the way you like but he is following the convention.

    • @minalouisyassa
      @minalouisyassa 7 років тому +2

      Well you should think of it this way: d/dx (df/dy), so you take df/dy and then differentiate it with respect to x, so the video is correct. In other words we start with the partial derivative with respect to y and then differentiate it with respect to x.

    • @punaydang2948
      @punaydang2948 4 роки тому

      becausr we move right to left in leibniz notation

  • @drewcarmichael1783
    @drewcarmichael1783 8 років тому +1

    First

  • @tsunningwah3471
    @tsunningwah3471 Місяць тому

    dddd

  • @adamc5478
    @adamc5478 5 років тому

    You dont explain the mixed derivative thing clearly, disliked.

    • @JensenPlaysMC
      @JensenPlaysMC 4 роки тому

      because there are other videos dedicated to this.

  • @shayakoo1
    @shayakoo1 3 роки тому

    Aye 3B1B

  • @tsunningwah3471
    @tsunningwah3471 Місяць тому

    黑人😊