Розмір відео: 1280 X 720853 X 480640 X 360
Показувати елементи керування програвачем
Автоматичне відтворення
Автоповтор
誰が見るんだよって思ってたら大学でやる羽目になりました
おんなじだw
ほんとにそうなんですよね
シュレディンガー方程式の導出①波動関数Ψについて②t微分→-i(E/h)Ψ③xで二回微分→-(p/h)^2Ψ④ポテンシャルV(x)の追加⑤三次元にする(xをrに)
これを大学の講義で流してくれてたら・・・ 未知のものを学習するとき、全体像と流れを捉えながら勉強を進めることの大切さを感じました。
この世で1番難しい学問みたいなイメージだったから避けてたけど大学で避けて通れなかった一時停止して理解の時間作りながらだけどギリ置いてかれないくらいの位置には来れたありがとう
今回、他の講義に比べてレベルがやや上がっているので初歩的な質問にも丁寧に答えていきます。しかし、そのどれもが「量子論」そのものの難しさでないので安心してください。以下、【Q&Aまとめ↓↓↓】Q. |Ψ|^2=|A|^2となる理由が分かりませんA. 複素数の二乗は|z|=z*zというように複素共役z*と元々の複素数zの積なので、今回の場合は |Ψ|^2=Ψ*Ψ=A*exp[-i(px/ħ-Et/ħ)]Aexp[i(px/ħ-Et/ħ)]=A*A=|A|^2となりますQ. 2πはどこに行ったんですか?A. ディラック定数ħ:=h/(2π)に入っていますQ. ポテンシャルV(x)が入ったとき、微分演算子∂^2/∂x^2がΨから離れてしまっているのはなぜですか?A. 通常の分配法則と同じで、{-ħ^2/(2m) ∂^2/∂x^2+V(x)}Ψ(x,t)=-ħ^2/(2m) ∂^2/∂x^2 Ψ(x,t)+V(x)Ψ(x,t)が成り立ちます。それらをまとめて書いた表記ですQ. 量子力学をやる前に複素関数論をやるべきですか?A. 高校数学の複素数の知識と、オイラーの公式「exp(iθ)=cosθ+isinθ」だけ知っていれば基本的に問題ありませんQ. 運動量演算子にマイナスが付くのはなぜですか?A. 正の方向に対して進行する波exp[i(px/ħ-Et/ħ)]に対して正の運動量pを与えるように付けられています
いつもわかりやすい動画ありがとうございます,参考にさせてもらっています!復習 で出てきた波の公式が,ネットで調べたものと違うのですが,どのように導出されたのでしょうか?
数式処理で悩んでいる人このコメに助けられる(ソース自分)かもしれない割に他のコメに埋もれてるので上に固定してみては
量子力学、、大変難しい学問ですが、楽しい学問でもあります。これを簡単に学べる機会を与えてくれた動画を作成してくれたことに感謝しています。今後も楽しみにしています。頑張ってください。
応援ありがとうございます!
量子力学という学問は特に、説明の仕方や授業構成が難しいとは思いますが、陰ながら応援しております。毎回楽しみにしています。
がんばるぜー!
いろいろなおっさんが書いた本を何冊も読みましたが、2階偏微分する理由が合理的に説明できたのを見たのは初めてです。ありがとうございます。
大学の量子力学でつまづいていたのでこのような動画はとても参考になりました。これからも量子力学系を沢山上げてくれると助かります
まかせろー!
古典力学の拡張なんや!そこを思い出させてもらっただけでも凄く勉強する意欲が湧くわ!
高二ですが、物理好きなんで見てます
大学入って3回目の化学基礎の授業で出てきたけど何も理解できずにこの動画みたらいつのまにか朝になってました
シュレーディンガーのヨビノリ動画が始まるまではファボゼロのボケをするヨビノリとしないヨビノリが存在する
観測されると滑る
量子力学はこの世の全てを統べるの同じ(狂気)
@@yobinori ラプラスのヨビノリ
もう片方のヨビノリは何故観測されないのか?共存度が限りなくゼロに近いのか、、
なんかもうかっこよすぎる.......
大学時代物理学科で学んだけど、改めて楽しい。
本当にめっちゃわかりやすい。そして面白い。自分の勉強しなきゃいけない部分が明確になった(数学)
大学で授業を聞く前にこの動画を見ていれば、量子力学を見る目が変わっただろうなあ
汎関数を量と見るのは、いくら整合的になろうとも、難しいです。講義中最もなことをおっしゃいました。俯瞰できるようになってから、深い理解に至ることを目指す。高校生を教えていて、本質的なことをときどきいうようにしておりますが、なかなか理解してもらえないです。今、そこまで到達してほしいという、暖かい気持ちなのですが、なにせ、計算することで数学を終わってしまう生徒が多いですから。
ヨビノリ見てもこんなに理解できなかったのは初めて
勉強できる上にお話も面白いのでとてもありがたいです。これからもがんばって下さい!
いつも楽しく拝見しています。 この授業は、とても懐かしいです。 もう一回勉強したくなってきました。
もうこの方程式何度も見たけど、まったくわからんw
何度も見直して、ようやくハミルトニアンと波動関数の関係を理解しました!ありがとうございます
量子力学を学びなおししておるのですが、学生時代からこの量子化とか演算子の話がピンとこなかったのです。やっぱりそこには飛躍が必要なんですな。実験やるうえでは丸覚えして解ければいいわけなんで、導出とか改めてやるとなんだか新鮮です。
続く講義もお楽しみください^^
自分も学生時代にはその部分が気持ち悪かったです^^;。実際は当時の物理学者たちの知見による深い洞察があるようですが、詳細は自分で文献を辿るしかなさそうです。解析力学では運動量とエネルギーが平行移動と時間推進の無限小生成子として働いたことを量子力学でも適用する導出なら、生成演算子としての運動量とハミルトニアンが自然に出てきて受け入れやすいですよ。ハミルトニアン演算子が波動関数の時間発展であると仮定すれば、そのままシュレディンガー方程式になります。
最初の語りがかっこよすぎませんか?そして内容わかりやすすぎだと思います!けしからん!(?)しゃべりと編集で入ってるテロップ…最強です(語彙力)
量子力学はこの感じで行くぜー!
確率一定という所が腑に落ちない🤔🤔
@@ああ-b1l3f 何となく分かった気がする
全体を俯瞰しながら進むから、復習にすごくいい!
構造化学の授業で訳が分からなかったので見てます。オンライン授業はわかりにくいはと思っていましたが、予備ノリさんはわかりやすいですね。
量子力学、後期で始まりましたが、頑張って勉強したいと思います。
量子化を数式で表せるってよく考えるとすごい
みりん ですね。(⌒‐⌒)数学は物理学の言語であると教わりましたが、ある程度のレベルになるとこの世界が数式で見えてしまうので。感慨深い…。
maestrorichter この世界が数式で見えるなんてすごいですね。そこまでいってみたいです笑
57歳のオバサンです。高校で量子力学を学んでないので、わかりやすく教えて頂きありがたいです。
この波の式というのは、正弦波が正の向きに進むときの式でしょうか?私が計算したところ、sin2π(νt-x/λ)となったのですが、この板書にある式は位相がπズレたものを使用しているのでしょうか?
喋るs軌道
今までのコメントで一番センスある・・・
予備校のノリで学ぶ「大学の数学・物理」 えへへ
シュレーディンガー方程式の構造がよくわかりました‼️ありがとうございます🙇
えへへ
個人的にナイスタイミングです。ありがとうございます!
早く次見たい。編集頑張って下さい^_^
待っててねー!
講義とても面白くて分かりやすいと思いました!大学で量子力学を2年ほど勉強してますが、量子力学は計算も大変ですが考え方も難しくまだほとんど理解できません。ディラックや砂川重信の量子力学などを読んで、今までの理解はこんな感じです(うまくまとまりません)。○二重スリットの実験で、片方のスリットを通過する電子を観測すると干渉縞が現れない。これは(観測に用いた)光子が電子を散乱したためである。また粒子の位置と運動量の不確定性も反粒子との散乱(反粒子と対消滅して再び真空から粒子が現れる)によるものだと考えてよい。つまり、量子力学の適用範囲は光子や反粒子などの影響を受ける範囲であり、おおよそディラック定数のオーダーとなる。○位置と運動量の交換関係が0でない(これをi×ディラック定数とする)ことを要請すると古典力学から量子力学に移行する。ハミルトンの正準方程式に交換関係を要請すればシュレディンガー方程式が得られる。また、交換関係に等価な関係式として不確定性原理も得られる。シュレディンガー方程式から得られる理論と実験事実からそれがh/4πであることが分かった。○量子力学で物理量は演算子に対応付けられる。一般の状態(波動関数)は物理量の固有状態の重ね合わせだが、観測すると(とある過程によって)その物理量の固有状態の内の一つに収束し物理量の固有値が観測される(どの固有値が観測されるかは確率的にしか分からない)。シュレディンガーの波動力学やハイゼンベルグの行列力学、パウリの経路積分がほぼ独立に発展し、ディラックはそれらが等価な理論であることを説明し、それらを包括する定式化を行ったそうです。とても感動しました。いつかは場の量子論などの研究できるようになりたいので、古典電磁気学、相対論、量子力学、統計力学などを頑張って勉強します!!
どれも楽しいよ!がんばってー!
高校の時に憧れで見てた動画を試験対策で見ることになるとは
2周目いないし3周目です。別動画で記しました教科書類を熟読した上での再受講です。本当に量子力学は難しい。どうも有難うございます。先生の今日のご講義で朝永振一郎先生の「光子の裁判」を思い出しました。
たくみの授業Ψ高ですね。
あ〜波動の音〜♪
ブルーバックスで行列力学と同じって読んだ❗今、Wikipediaみたらかつて波動力学と行列力学は対立していたそうで。「実は同じ」と分かったとき、数学者たちは感動したんだろうか…。
たくみがいうとファボゼロが難しい理系用語に聞こえる
今まででベスな量子力学の講義
初めて理解できたと思います😂ありがとうございます😭
物理嫌いになってロリコンを拗らせたシュレディンガーさん超カッケー。
歪んでんな
シュレーディンガー方程式が出来上がるまでの思考が倫理的に理解出来ました。どの様にしてこんな方程式が出来上がったのか長年の悩みでした。シュレーディンガーが神から人間になった様な思いです。ハイゼンベルク方程式も是非お願いしたいのですが?
3回くらい聞いたら頭に入りそう
量子力学は、ハイゼンベルグにより、解析力学の正準変換論に基づいて行列形式の運動方程式として記述された物理学の一理論です。古典力学的な論理の延長の範囲で組み立てられています。古典力学上の物理量を演算子に対応付けるいわゆる「量子力学における量子化」は、「ポアッソン括弧」を「交換子」に置き換えることに相当します。量子力学の行列計算を、慣れ親しんだ偏微分方程式(波動方程式)で代用するのが、シュレーディンガー方程式です。ただしこのシュレーディンガー方程式は、人間の知覚認識には馴染みやすいが物理学的に正当な根拠のない物質波という考えに基づいて導出されています。にもかかわらず計算結果は、純数学的な事情によって”ハイゼンベルグの量子力学とオーバーラップする部分”がすべて完全に一致しているようです。つまり物理的意味の解釈について考察するとき、波動方程式を算術計算上いくら正しくコネくり回していてもその結果がすべて無条件でそのまま正しい物理的考察につながるとは限らないわけです。量子力学では、演算子が物理量に対応しており、解析力学(つまり古典力学)の正準交換関係を演算子で表す(量子化する)ことによって、ハイゼンベルグの運動方程式が物理量の未来(時間発展)を計算できることになります。古典力学を量子化すると量子力学になるわけですが、だからと言って量子力学と古典力学が完全に一体的な理論だとは言えません。現状において、物理量と演算子の対応関係は恣意的に決められているにすぎないからです。量子力学ではスピンという物理量が導入されていますが、古典物理学にそんな物理量は存在しません。スピンは量子力学的粒子の二重性と同様、古典力学から説明できないし人間の知覚認識の外です。そういう意味では解析力学の相空間や相対論の四元時空も、人間の知覚認識を逸脱してますね。物理量の未来を正しく計算予測できていれば、人間の知覚認識に照らしたときにどんなに奇妙な理論でも正しい物理学理論ということになります。
講義面白かったです。(1)から(5)まで順を追って考え方を説明していただけたので式の意味が理解できた気がしました。|ψ|^2 =一定(定数)の場合、位置が不確定というのがイメージできませんでした。。恐らくこの場合、どの位置でもサイコロみたいに一定(一様分布)の確率を持つからとイメージしているのですが、あってますでしょうか?
そのイメージで合っています!(というかそう考えました!)
ありがとうございます。合点しました!
そこで行き詰ってたから助かった。なるほどねー
めっちゃ助かる
ごめんなさい、これって確率が一様だと「嬉しい」ってことであってますか?あるいは、Δx=∞だとそうなるっていう論理があるんですか?
すっげえわかりやすい
更新早くて嬉しい!案内されてくりゅ
案内されてこい!
大学生になってから分かる、ヨビノリの真のありがたさ
更新はやい!だいすき!!
予備校のノリで学ぶ「大学の数学・物理」 あとリクエストなんですけど熱力学やって欲しいですエントロピーとかよう分からんです。
拝聴 有難うございます。
アブダクションを認め(、演繹の代わりに実験によって納得す)ることで可能性の広がるのが物理学ってことですね。そういえば高校時代は「美しい理論は論理回路で検証可能でなければならない」とこだわり過ぎて量子論よりももっと前の段階でつまずいたなあ。。どこまでが演繹的でどこにそれ以外の推論手法が用いられているか明確であるから、「今後世紀の大発見によってひっくり返りうるのはどこか」についても(ある程度)予測可能になりますね。
最初の波の式のν(ニュー)がv(ブイ)に見えて少し困った・・
これ、進研ゼミでやったやつだ
彼女できるな
鉄緑会は
進研先生の研究室なんやろなぁ
最初の波の式の位相を2π(t/Tーx/λ)から始めると、偏微分の段階で講義内とは逆の符号がでてきて、最終的なシュレディンガー方程式の符号も変化するんですが、それは良いのでしょうか? 波を一般的に表しているだけなので、位相の符号が先生の講義の中での位相と逆であろうともよいと思って解いてみたのですが...自分の計算が間違ってたらすみません💦
電気電子のやつらが量子力学やってて、壁すり抜けるとか確率の波とかなんとか言ってヤバいヤバい騒いでるから見に来たなるほどな。。 これはやばそう&そして萌えそうこれから先が気になります需要あります 続きお願いします!
続きも頑張ります!
ヨビノリたくみさんってすごく理論屋さんなんですかね…実験屋さんなら、「実験でシュレディンガー方程式が成り立つことがわかりました!」→「意外と古典力学の運動量やエネルギーと関係がある!?」って説明する気がする
元気50倍くらいになりました!
藤井四段がテスト勉強してる笑
すごく分かりやすかったです。目からうろこでした。
やったー!
観測結果と理論が矛盾する場合、理論が間違っているという事実を若い人にもわかってもらいたいですね。うぽつです♪
若くなくても
@@筑波しらせ うん♪ 私43♪
@@mk.248 ♪つける歳じゃないかもしれんもしかしたら
@@筑波しらせ てへペロ☆
化学基礎だとどこまで理解すればいいんですかね、全部ですか、そうですか…
涙拭けよ、
高2でおこがましいのですが、2:10からの説明が理解できません。不確定性原理についてはなんとなく理解できるのですがなぜそうなると波動関数2乗が一定になるのですか?あとなぜ波動関数が極形式のような形で表せられるのですか?またそこからどのようなことを示したいのですか?誰か教えて頂けるとありがたいです。興味本位で量子力学を調べてたら良い意味で沼にはまってしまいました笑
量子力学わけわからなすぎて行き着きました
いつもわかりやすい解説ありがとうございます!もしよろしければ井戸型ポテンシャルについて講義していただけると嬉しいです。
bonetoro1 私も井戸型ポテンシャルをやってほしいと今まさに思ってました!!!
井戸型ポテンシャルやるよー!
わかりやすいですね
Diracが、この時間に関して1階微分・空間座標について2階微分のシュレディンガ―方程式を、数学的対称性の美しさから、どうやって空間座標について1階微分のDiracの方程式に書き換えたか、導出して説明して欲しいです。シュレディンガ―方程式にはspinに自由度は現れて来ないが、Diracの電子論にはspinの自由度が現れるらしいです。
ざっくりとあらすじを書きます。詳しくは本を読んでください。Schroedinger 方程式を相対論的な理論にそのまま拡張すると、時間と空間の二階微分方程式になります。力の働かない自由粒子の場合、Klein-Gordon方程式と呼ばれるものになります。この方程式には以下の二つの欠点があります。(1) 波動関数の確率解釈が壊れる。(存在確率が負になる) (2) エネルギー < 0 の解が存在する。これらの欠点を克服するために、Dirac は時空間について一階微分方程式を考えました。それが Dirac 方程式です。やりかたは以下です。一階微分 : d/dx は、ローレンツ変換で不変ではありません。相対論では時空の位置ベクトル : (x,y,z,ct) はベクトルとして変換します。 これからローレン不変な量を作るにはこの長さをとればよく x^2 + y^2 + z^2 - (ct)^2 です。普通の場合と時間のところの符号がマイナスになります。微分もこれとおなじでd^2/dx^2 + d^2/dy^2 + d^2/dz^2 - d^2/d(ct)^2 が不変量になります。Klein-Gordon方程式にはこの二階微分が微分項として入ります。一階微分にするのは、時空以外の自由度を導入するしかありません。(d/dx, d/dy, d/dz, d/d(ct) ) 以外に ( γ1, γ2, γ3, γ0 ) という新しいベクトルを導入して、これらの内積を考えます。γ1,γ2,γ3,γ0 はKlein-Gordon方程式も満たす、という要請からある代数関係式を満たすものでなければなりません。もっとも簡単なものは 4x4 の行列によってこれをつくることができます。これをDirac行列と呼びます。要約すると、相対論の要請を満たす一階微分方程式を考えるために、時空以外の自由度導入した。その自由度はもっとも簡単なもので 4 。これは、spin = 1/2 の粒子の場合 ( 例 : 電子 ) の 反粒子 (粒子と反粒子 で 2) と Spin の自由度 (2) に対応します。
丁寧なご指導、有難うございます。とても助かります。保存版メモとしてテキストファイルに保存させて頂きました。Dirac、32歳の夏に研究室に3ヶ月間も籠り、Dirac方程式に辿りつくまでに、何を考え、何を見たのか、この詳しいあらすじで想像できます。ちょっとずつでも取得していきたいと思います。Klein-Gordon方程式についても教科書で勉強しましたが、高校出たばかりのガキの自分にはその先の道の素晴らしさを知ることもなく不勉強に終わってしまいました。天才Diracが開いた神の方程式への門、数学的対称性に重点を置いた天才的な計算式の展開、その後人類に享受された恩恵は計りしれないものがあります。超弦理論なんてまだまだ、先の話。Dirac方程式も導出出来ないのにそんな高尚な学問は、私にはまだ勉強する資格すらありません。文言だけ覚えて知ったふりしても、虚しいだけ。数学は解けて初めて価値があるものです。数学では1円すら稼ぐ事ができませんが、それでも神の方程式の道を少しでも辿りたい欲望には誰しも留まるところを知らないでしょう。誠に有難うございました。
物理化学の授業ででてきたので助かりました!化学系の学科ってほんと色々やらされません…?無機、有機、物理、生命科学…欲張りすぎじゃ
なぜx/λとνtがいつもと逆なんでしょうか?
結局、ヨビノリって専門何だったんだろう?
今シュレーディンガー方程式で詰みかけているので目ん玉かっぽじって見ています次回も楽しみにしています!
何度も見てくれ〜!
テンソルの何回かにわたる講義が聞きたいです!
いいね〜٩( 'ω' )و
自分もテンソル判らないので解説お願いします。あと、最近独学でやっているけどなかなか理解が進まない一般相対論もお願いします。
化学基礎の時言われて調べたらたくみさんが解説してるとは思わなかった!
今高3で、高校物理、高校数学までしか理解してないんですけど、この講義の内容理解するにはまずなんの予備知識が必要かどなたか教えて欲しいです🙇🏻♀️
明日ここのテストあるから超ナイスタイミング
すご
このシリーズの中でじゃなくてもいいのですがコペンハーゲン解釈みたいなものを集めて物理ロマン集みたいな動画良かったら待ってます
リクエストありがと〜!
2:18 で波動関数の絶対値が一定になって欲しいというのはなぜですか?
miyamoto901 今更ですが返信します。Δp=pとΔx=∞なのは分かるでしょうか? この場合、波(粒子)の場所がどこにあるのか全く見当がつかない状態です。例えば、100面体のサイコロを考えます。これを振って何の値が出るか見当が付きますか?付きませんね。なぜなら、どの面も出る確率は一定だからです。これを波に応用すればいいだけです
@@はるぅ-y7u なんも答えてなくて草
大学入学するといきなり出てくるのは有名なバグパッチはない
第3講は何の講義だろう、、、楽しみです!
お楽しみに〜!
7:40の辺りでこんなことを言っていますね。「新しい物理においては論理の飛躍も必要・・・これを信じてほしい」物理学にあって信じるとは何事。どんなときに信じることが求められるのでしょう。結局物理も信仰なのかな?このあたりのこと一度深く語っていただきたいです。
ここでは「(教育的に一旦)信じてほしい」という意味です。しかし、物理は数学と違って原理から1つの答えに行き着くわけではないので(現実を反映したものでなければならない)言ってみれば「無数の実験に裏打ちされたこの世で最も信憑性のある"信仰"」です
やはり信仰でしたか。物理も数学もオタクになると皆信仰ってゆーやつもいます。
ここのコメント欄の圧倒的オタク感にちょっと感動
どのチャンネルよりもすごいよ多分
青山マルゲリータ 理由は簡単。たくみさんは質問に答えるから。言いっぱなしで基礎に踏み込まない動画が殆どの他とは違うからね。議論が深まる。
遠入7kamui25 確かに真面目な話、たくみさん凄いと思うファボゼロのボケの魅力だけじゃない偉ぶらないところもいい感じ
青山マルゲリータ ははは、信奉者になってますね😉✨確かに見識が広く視線が身近ですね。僕は院の経験は無いのでそれが一般的なのか、或いはたくみさんの個人的な資質なのか判断できないけど硬軟織り混ぜて見識が広い。それに、視聴者が大人(たとえ実際は成人ではなくとも)であることも大きいね。偉ぶる(=子供にハッタリをかますような)必要がない。これからも期待❗ ですね。
遠入7kamui25 うわっ、そうか!自覚がなかったけど信者になってたんだ今後は布教活動にいそしみます
楽しい講義ありがとうございます。空間のある点Pに物質Aがあるとすると、それと全く同時刻に点Pには別の物質Bが存在できません。この物質Aをどんどん小さくして微小領域を考えた場合、物質または粒子などの空間点の占拠性はどのサイズまで認識できるでしょうか?空間占拠と量子の二重性とは関係ありますでしょうか。
粒子はゼロ点振動(めちゃちょっとの揺らぎ)をしている為、相対性理論に従い時間は不確定となり同時刻に存在するという事はないと思うのです。(適当)
運動量がih∇じゃなくて-ih∇なのに納得がいきません。。
どれだけ勉強したらこんな理解できるんだ?
(2)の波動関数が一定になってほしい理由がわからないです。教えていただけませんか
位置はしっかり定まっていないから確率を考えるということかな?
俺もそこだけ理解できんかった
この動画見てるのにモテる俺様は、法則を逸している。
涙拭けよ
2階偏微分する理由がわかったヨビノリのホームページでおすすめされている本を自力で読んでみて混乱してから動画を見るとすっきりわかります!
運動量pの演算子化(量子化)を行った時、符号がマイナスになる理由はちゃんと勉強すると分かるんですかね…単に置き換えるだけであれば符号はプラスでも困らない気がしたのですが…
ψ(x、t)を一行の右辺であらわしたいから複素数i が出てくるの? もし二行で表現すれば実数平面でもいいんじゃないのか。またx=f(t)であらわせば実数でも二次元デカルト平面であらわせるんじゃないのか。通常は、tの関数として、y=f(t)x=g(t)でいいでしょう?「複素平面」や「オイラーの公式」なんていらないじゃん。
複素数一個 ( C^1) と実数二個 (R^2) は同等なので、おっしゃるとおりです、R^2 でかけます。しかし、この場合、C^1 では i という複素数を掛けるよいう簡単な演算を、R^2 では行列を使って表さないといけない。かなり面倒なのです。なので普通、複素数を使います。
I LOVE quantum mechanics!!!!
だがもう着いていけない…w何回も見直します。
今、無機化学を学んでいるのですが、量子力学を既知のものとして扱うため、無機化学の学習をすすめつつ、量子力学も学びたいと思っています。量子力学を割としっかりとやりたいのですが、おすすめの参考書はありますか?
概要欄を参考にしてみて!
本当に一生のお願いなので複素関数論やってくださいお願いします。
複素関数論もやるぜ〜
不確定による予定調和を確率で予想するんですか?
spinについてのゼミを取ったのですが、出てくるのは、ほとんど行列でした。なんなんですか?
参考までに量子力学1のテストでたとこひっぱりだしてみました。・有限の井戸型ポテンシャルの問題・エーレンフェストの定理の証明・異なった固有エネルギーをもつ規格化された波動関数の期待値の計算・物理量の行列表現の問題・水素原子の波動関数の問題(ざっくりしすぎですよね...すいません。疲れちゃいました。。。)
量子力学2のテストはどっかへ行きました。すいません。
情報せんきゅ〜!!
これってどの大学も一年生でやるの?流石に分からなすぎてまずい、、、
復習の波の式おかしくね?
P(太文字)→-ih∇のところがよく分かりません。どうしてih∇ではダメなのでしょうか。ただ、とても分かりやすく面白いです!
誰が見るんだよって思ってたら大学でやる羽目になりました
おんなじだw
ほんとにそうなんですよね
シュレディンガー方程式の導出
①波動関数Ψについて
②t微分→-i(E/h)Ψ
③xで二回微分→-(p/h)^2Ψ
④ポテンシャルV(x)の追加
⑤三次元にする(xをrに)
これを大学の講義で流してくれてたら・・・ 未知のものを学習するとき、全体像と流れを捉えながら勉強を進めることの大切さを感じました。
この世で1番難しい学問みたいなイメージだったから避けてたけど大学で避けて通れなかった
一時停止して理解の時間作りながらだけどギリ置いてかれないくらいの位置には来れたありがとう
今回、他の講義に比べてレベルがやや上がっているので初歩的な質問にも丁寧に答えていきます。
しかし、そのどれもが「量子論」そのものの難しさでないので安心してください。
以下、【Q&Aまとめ↓↓↓】
Q. |Ψ|^2=|A|^2となる理由が分かりません
A. 複素数の二乗は|z|=z*zというように複素共役z*と元々の複素数zの積なので、今回の場合は
|Ψ|^2=Ψ*Ψ=A*exp[-i(px/ħ-Et/ħ)]Aexp[i(px/ħ-Et/ħ)]=A*A=|A|^2となります
Q. 2πはどこに行ったんですか?
A. ディラック定数ħ:=h/(2π)に入っています
Q. ポテンシャルV(x)が入ったとき、微分演算子∂^2/∂x^2がΨから離れてしまっているのはなぜですか?
A. 通常の分配法則と同じで、{-ħ^2/(2m) ∂^2/∂x^2+V(x)}Ψ(x,t)=-ħ^2/(2m) ∂^2/∂x^2 Ψ(x,t)+V(x)Ψ(x,t)が成り立ちます。それらをまとめて書いた表記です
Q. 量子力学をやる前に複素関数論をやるべきですか?
A. 高校数学の複素数の知識と、オイラーの公式「exp(iθ)=cosθ+isinθ」だけ知っていれば基本的に問題ありません
Q. 運動量演算子にマイナスが付くのはなぜですか?
A. 正の方向に対して進行する波exp[i(px/ħ-Et/ħ)]に対して正の運動量pを与えるように付けられています
いつもわかりやすい動画ありがとうございます,参考にさせてもらっています!
復習 で出てきた波の公式が,ネットで調べたものと違うのですが,どのように導出されたのでしょうか?
数式処理で悩んでいる人このコメに助けられる(ソース自分)かもしれない割に他のコメに埋もれてるので上に固定してみては
量子力学、、大変難しい学問ですが、楽しい学問でもあります。これを簡単に学べる機会を与えてくれた動画を作成してくれたことに感謝しています。今後も楽しみにしています。頑張ってください。
応援ありがとうございます!
量子力学という学問は特に、説明の仕方や授業構成が難しいとは思いますが、陰ながら応援しております。
毎回楽しみにしています。
がんばるぜー!
いろいろなおっさんが書いた本を何冊も読みましたが、2階偏微分する理由が合理的に説明できたのを見たのは初めてです。
ありがとうございます。
大学の量子力学でつまづいていたのでこのような動画はとても参考になりました。これからも量子力学系を沢山上げてくれると助かります
まかせろー!
古典力学の拡張なんや!そこを思い出させてもらっただけでも凄く勉強する意欲が湧くわ!
高二ですが、物理好きなんで見てます
大学入って3回目の化学基礎の授業で出てきたけど何も理解できずにこの動画みたらいつのまにか朝になってました
シュレーディンガーのヨビノリ
動画が始まるまではファボゼロのボケをするヨビノリとしないヨビノリが存在する
観測されると滑る
量子力学はこの世の全てを統べるの同じ(狂気)
@@yobinori ラプラスのヨビノリ
もう片方のヨビノリは何故観測されないのか?共存度が限りなくゼロに近いのか、、
なんかもうかっこよすぎる.......
大学時代物理学科で学んだけど、改めて楽しい。
本当にめっちゃわかりやすい。そして面白い。自分の勉強しなきゃいけない部分が明確になった(数学)
大学で授業を聞く前にこの動画を見ていれば、量子力学を見る目が変わっただろうなあ
汎関数を量と見るのは、いくら整合的になろうとも、難しいです。講義中最もなことをおっしゃいました。俯瞰できるようになってから、深い理解に至ることを目指す。高校生を教えていて、本質的なことをときどきいうようにしておりますが、なかなか理解してもらえないです。今、そこまで到達してほしいという、暖かい気持ちなのですが、なにせ、計算することで数学を終わってしまう生徒が多いですから。
ヨビノリ見てもこんなに理解できなかったのは初めて
勉強できる上にお話も面白いのでとてもありがたいです。これからもがんばって下さい!
いつも楽しく拝見しています。 この授業は、とても懐かしいです。 もう一回勉強したくなってきました。
もうこの方程式何度も見たけど、まったくわからんw
何度も見直して、ようやくハミルトニアンと波動関数の関係を理解しました!ありがとうございます
量子力学を学びなおししておるのですが、学生時代からこの量子化とか演算子の話がピンとこなかったのです。やっぱりそこには飛躍が必要なんですな。
実験やるうえでは丸覚えして解ければいいわけなんで、導出とか改めてやるとなんだか新鮮です。
続く講義もお楽しみください^^
自分も学生時代にはその部分が気持ち悪かったです^^;。実際は当時の物理学者たちの知見による深い洞察があるようですが、詳細は自分で文献を辿るしかなさそうです。解析力学では運動量とエネルギーが平行移動と時間推進の無限小生成子として働いたことを量子力学でも適用する導出なら、生成演算子としての運動量とハミルトニアンが自然に出てきて受け入れやすいですよ。ハミルトニアン演算子が波動関数の時間発展であると仮定すれば、そのままシュレディンガー方程式になります。
最初の語りがかっこよすぎませんか?
そして内容わかりやすすぎだと思います!けしからん!(?)
しゃべりと編集で入ってるテロップ…最強です(語彙力)
量子力学はこの感じで行くぜー!
確率一定という所が腑に落ちない🤔🤔
@@ああ-b1l3f 何となく分かった気がする
全体を俯瞰しながら進むから、復習にすごくいい!
構造化学の授業で訳が分からなかったので見てます。オンライン授業はわかりにくいはと思っていましたが、予備ノリさんはわかりやすいですね。
量子力学、後期で始まりましたが、頑張って勉強したいと思います。
量子化を数式で表せるってよく考えるとすごい
みりん
ですね。(⌒‐⌒)
数学は物理学の言語であると教わりましたが、ある程度のレベルになるとこの世界が数式で見えてしまうので。感慨深い…。
maestrorichter この世界が数式で見えるなんてすごいですね。そこまでいってみたいです笑
57歳のオバサンです。高校で量子力学を学んでないので、わかりやすく教えて頂きありがたいです。
この波の式というのは、正弦波が正の向きに進むときの式でしょうか?私が計算したところ、sin2π(νt-x/λ)となったのですが、この板書にある式は位相がπズレたものを使用しているのでしょうか?
喋るs軌道
今までのコメントで一番センスある・・・
予備校のノリで学ぶ「大学の数学・物理」 えへへ
シュレーディンガー方程式の構造がよくわかりました‼️ありがとうございます🙇
えへへ
個人的にナイスタイミングです。
ありがとうございます!
えへへ
早く次見たい。
編集頑張って下さい^_^
待っててねー!
講義とても面白くて分かりやすいと思いました!大学で量子力学を2年ほど勉強してますが、量子力学は計算も大変ですが考え方も難しくまだほとんど理解できません。ディラックや砂川重信の量子力学などを読んで、今までの理解はこんな感じです(うまくまとまりません)。
○二重スリットの実験で、片方のスリットを通過する電子を観測すると干渉縞が現れない。これは(観測に用いた)光子が電子を散乱したためである。また粒子の位置と運動量の不確定性も反粒子との散乱(反粒子と対消滅して再び真空から粒子が現れる)によるものだと考えてよい。つまり、量子力学の適用範囲は光子や反粒子などの影響を受ける範囲であり、おおよそディラック定数のオーダーとなる。
○位置と運動量の交換関係が0でない(これをi×ディラック定数とする)ことを要請すると古典力学から量子力学に移行する。ハミルトンの正準方程式に交換関係を要請すればシュレディンガー方程式が得られる。また、交換関係に等価な関係式として不確定性原理も得られる。シュレディンガー方程式から得られる理論と実験事実からそれがh/4πであることが分かった。
○量子力学で物理量は演算子に対応付けられる。一般の状態(波動関数)は物理量の固有状態の重ね合わせだが、観測すると(とある過程によって)その物理量の固有状態の内の一つに収束し物理量の固有値が観測される(どの固有値が観測されるかは確率的にしか分からない)。
シュレディンガーの波動力学やハイゼンベルグの行列力学、パウリの経路積分がほぼ独立に発展し、ディラックはそれらが等価な理論であることを説明し、それらを包括する定式化を行ったそうです。とても感動しました。いつかは場の量子論などの研究できるようになりたいので、古典電磁気学、相対論、量子力学、統計力学などを頑張って勉強します!!
どれも楽しいよ!がんばってー!
高校の時に憧れで見てた動画を試験対策で見ることになるとは
2周目いないし3周目です。別動画で記しました教科書類を熟読した上での再受講です。本当に量子力学は難しい。どうも有難うございます。先生の今日のご講義で朝永振一郎先生の「光子の裁判」を思い出しました。
たくみの授業Ψ高ですね。
あ〜波動の音〜♪
ブルーバックスで行列力学と
同じって読んだ❗
今、Wikipediaみたらかつて
波動力学と行列力学は対立
していたそうで。
「実は同じ」と分かったとき、
数学者たちは感動したんだ
ろうか…。
たくみがいうとファボゼロが難しい理系用語に聞こえる
今まででベスな量子力学の講義
初めて理解できたと思います😂ありがとうございます😭
物理嫌いになってロリコンを拗らせたシュレディンガーさん超カッケー。
歪んでんな
シュレーディンガー方程式が出来上がるまでの思考が倫理的に理解出来ました。
どの様にしてこんな方程式が出来上がったのか長年の悩みでした。
シュレーディンガーが神から人間になった様な思いです。
ハイゼンベルク方程式も是非お願いしたいのですが?
3回くらい聞いたら頭に入りそう
量子力学は、ハイゼンベルグにより、解析力学の正準変換論に基づいて行列形式の運動方程式として記述された物理学の一理論です。
古典力学的な論理の延長の範囲で組み立てられています。
古典力学上の物理量を演算子に対応付けるいわゆる「量子力学における量子化」は、「ポアッソン括弧」を「交換子」に置き換えることに相当します。
量子力学の行列計算を、慣れ親しんだ偏微分方程式(波動方程式)で代用するのが、シュレーディンガー方程式です。
ただしこのシュレーディンガー方程式は、人間の知覚認識には馴染みやすいが物理学的に正当な根拠のない物質波という考えに基づいて導出されています。
にもかかわらず計算結果は、純数学的な事情によって”ハイゼンベルグの量子力学とオーバーラップする部分”がすべて完全に一致しているようです。
つまり物理的意味の解釈について考察するとき、波動方程式を算術計算上いくら正しくコネくり回していてもその結果がすべて無条件でそのまま正しい物理的考察につながるとは限らないわけです。
量子力学では、演算子が物理量に対応しており、解析力学(つまり古典力学)の正準交換関係を演算子で表す(量子化する)ことによって、ハイゼンベルグの運動方程式が物理量の未来(時間発展)を計算できることになります。
古典力学を量子化すると量子力学になるわけですが、だからと言って量子力学と古典力学が完全に一体的な理論だとは言えません。
現状において、物理量と演算子の対応関係は恣意的に決められているにすぎないからです。
量子力学ではスピンという物理量が導入されていますが、古典物理学にそんな物理量は存在しません。
スピンは量子力学的粒子の二重性と同様、古典力学から説明できないし人間の知覚認識の外です。
そういう意味では解析力学の相空間や相対論の四元時空も、人間の知覚認識を逸脱してますね。
物理量の未来を正しく計算予測できていれば、人間の知覚認識に照らしたときにどんなに奇妙な理論でも正しい物理学理論ということになります。
講義面白かったです。(1)から(5)まで順を追って考え方を説明していただけたので式の意味が理解できた気がしました。
|ψ|^2 =一定(定数)の場合、位置が不確定というのがイメージできませんでした。。
恐らくこの場合、どの位置でもサイコロみたいに一定(一様分布)の確率を持つからとイメージしているのですが、あってますでしょうか?
そのイメージで合っています!
(というかそう考えました!)
ありがとうございます。合点しました!
そこで行き詰ってたから助かった。なるほどねー
めっちゃ助かる
ごめんなさい、これって確率が一様だと「嬉しい」ってことであってますか?
あるいは、Δx=∞だとそうなるっていう論理があるんですか?
すっげえわかりやすい
更新早くて嬉しい!
案内されてくりゅ
案内されてこい!
大学生になってから分かる、ヨビノリの真のありがたさ
更新はやい!だいすき!!
えへへ
予備校のノリで学ぶ「大学の数学・物理」 あとリクエストなんですけど熱力学やって欲しいですエントロピーとかよう分からんです。
拝聴 有難うございます。
アブダクションを認め(、演繹の代わりに実験によって納得す)ることで可能性の広がるのが物理学ってことですね。
そういえば高校時代は「美しい理論は論理回路で検証可能でなければならない」とこだわり過ぎて量子論よりももっと前の段階でつまずいたなあ。。
どこまでが演繹的でどこにそれ以外の推論手法が用いられているか明確であるから、「今後世紀の大発見によってひっくり返りうるのはどこか」についても(ある程度)予測可能になりますね。
最初の波の式のν(ニュー)がv(ブイ)に見えて少し困った・・
これ、進研ゼミでやったやつだ
彼女できるな
鉄緑会は
進研先生の研究室なんやろなぁ
最初の波の式の位相を2π(t/Tーx/λ)から始めると、偏微分の段階で講義内とは逆の符号がでてきて、最終的なシュレディンガー方程式の符号も変化するんですが、それは良いのでしょうか? 波を一般的に表しているだけなので、位相の符号が先生の講義の中での位相と逆であろうともよいと思って解いてみたのですが...
自分の計算が間違ってたらすみません💦
電気電子のやつらが量子力学やってて、壁すり抜けるとか確率の波とかなんとか言ってヤバいヤバい騒いでるから見に来た
なるほどな。。 これはやばそう&そして萌えそう
これから先が気になります
需要あります 続きお願いします!
続きも頑張ります!
ヨビノリたくみさんってすごく理論屋さんなんですかね…
実験屋さんなら、「実験でシュレディンガー方程式が成り立つことがわかりました!」→「意外と古典力学の運動量やエネルギーと関係がある!?」って説明する気がする
元気50倍くらいになりました!
藤井四段がテスト勉強してる笑
すごく分かりやすかったです。目からうろこでした。
やったー!
観測結果と理論が矛盾する場合、理論が間違っている
という事実を若い人にもわかってもらいたいですね。
うぽつです♪
若くなくても
@@筑波しらせ うん♪ 私43♪
@@mk.248 ♪つける歳じゃ
ないかもしれん
もしかしたら
@@筑波しらせ てへペロ☆
化学基礎だとどこまで理解すればいいんですかね、全部ですか、そうですか…
涙拭けよ、
高2でおこがましいのですが、2:10からの説明が理解できません。不確定性原理についてはなんとなく理解できるのですがなぜそうなると波動関数2乗が一定になるのですか?あとなぜ波動関数が極形式のような形で表せられるのですか?またそこからどのようなことを示したいのですか?誰か教えて頂けるとありがたいです。興味本位で量子力学を調べてたら良い意味で沼にはまってしまいました笑
量子力学わけわからなすぎて行き着きました
いつもわかりやすい解説ありがとうございます!
もしよろしければ井戸型ポテンシャルについて講義していただけると嬉しいです。
bonetoro1
私も井戸型ポテンシャルをやってほしいと今まさに思ってました!!!
井戸型ポテンシャルやるよー!
わかりやすいですね
Diracが、この時間に関して1階微分・空間座標について2階微分のシュレディンガ―方程式を、数学的対称性の美しさから、どうやって空間座標について1階微分のDiracの方程式に書き換えたか、導出して説明して欲しいです。
シュレディンガ―方程式にはspinに自由度は現れて来ないが、Diracの電子論にはspinの自由度が現れるらしいです。
ざっくりとあらすじを書きます。詳しくは本を読んでください。
Schroedinger 方程式を相対論的な理論にそのまま拡張すると、時間と空間の二階微分方程式になります。力の働かない自由粒子の場合、Klein-Gordon方程式と呼ばれるものになります。この方程式には以下の二つの欠点があります。(1) 波動関数の確率解釈が壊れる。(存在確率が負になる) (2) エネルギー < 0 の解が存在する。
これらの欠点を克服するために、Dirac は時空間について一階微分方程式を考えました。それが Dirac 方程式です。やりかたは以下です。
一階微分 : d/dx は、ローレンツ変換で不変ではありません。相対論では時空の位置ベクトル : (x,y,z,ct) はベクトルとして変換します。 これからローレン不変な量を作るにはこの長さをとればよく x^2 + y^2 + z^2 - (ct)^2 です。普通の場合と時間のところの符号がマイナスになります。微分もこれとおなじで
d^2/dx^2 + d^2/dy^2 + d^2/dz^2 - d^2/d(ct)^2 が不変量になります。Klein-Gordon方程式にはこの二階微分が微分項として入ります。
一階微分にするのは、時空以外の自由度を導入するしかありません。
(d/dx, d/dy, d/dz, d/d(ct) ) 以外に ( γ1, γ2, γ3, γ0 ) という新しいベクトルを導入して、これらの内積を考えます。γ1,γ2,γ3,γ0 はKlein-Gordon方程式も満たす、という要請からある代数関係式を満たすものでなければなりません。もっとも簡単なものは 4x4 の行列によってこれをつくることができます。これをDirac行列と呼びます。
要約すると、相対論の要請を満たす一階微分方程式を考えるために、時空以外の自由度導入した。その自由度はもっとも簡単なもので 4 。これは、spin = 1/2 の粒子の場合 ( 例 : 電子 ) の 反粒子 (粒子と反粒子 で 2) と Spin の自由度 (2) に対応します。
丁寧なご指導、有難うございます。
とても助かります。
保存版メモとしてテキストファイルに保存させて頂きました。
Dirac、32歳の夏に研究室に3ヶ月間も籠り、Dirac方程式に辿りつくまでに、何を考え、何を見たのか、この詳しいあらすじで想像できます。
ちょっとずつでも取得していきたいと思います。
Klein-Gordon方程式についても教科書で勉強しましたが、高校出たばかりのガキの自分にはその先の道の素晴らしさを知ることもなく不勉強に終わってしまいました。
天才Diracが開いた神の方程式への門、数学的対称性に重点を置いた天才的な計算式の展開、その後人類に享受された恩恵は計りしれないものがあります。
超弦理論なんてまだまだ、先の話。Dirac方程式も導出出来ないのにそんな高尚な学問は、私にはまだ勉強する資格すらありません。
文言だけ覚えて知ったふりしても、虚しいだけ。数学は解けて初めて価値があるものです。
数学では1円すら稼ぐ事ができませんが、それでも神の方程式の道を少しでも辿りたい欲望には誰しも留まるところを知らないでしょう。
誠に有難うございました。
物理化学の授業ででてきたので助かりました!
化学系の学科ってほんと色々やらされません…?無機、有機、物理、生命科学…欲張りすぎじゃ
なぜx/λとνtがいつもと逆なんでしょうか?
結局、ヨビノリって専門何だったんだろう?
今シュレーディンガー方程式で詰みかけているので目ん玉かっぽじって見ています
次回も楽しみにしています!
何度も見てくれ〜!
テンソルの何回かにわたる講義が聞きたいです!
いいね〜٩( 'ω' )و
自分もテンソル判らないので解説お願いします。あと、最近独学でやっているけどなかなか理解が進まない一般相対論もお願いします。
化学基礎の時言われて調べたらたくみさんが解説してるとは思わなかった!
今高3で、高校物理、高校数学までしか理解してないんですけど、この講義の内容理解するにはまずなんの予備知識が必要かどなたか教えて欲しいです🙇🏻♀️
明日ここのテストあるから超ナイスタイミング
すご
このシリーズの中でじゃなくてもいいのですがコペンハーゲン解釈みたいなものを集めて物理ロマン集みたいな動画良かったら待ってます
リクエストありがと〜!
2:18 で波動関数の絶対値が一定になって欲しいというのはなぜですか?
miyamoto901 今更ですが返信します。
Δp=pとΔx=∞なのは分かるでしょうか? この場合、波(粒子)の場所がどこにあるのか全く見当がつかない状態です。例えば、100面体のサイコロを考えます。これを振って何の値が出るか見当が付きますか?付きませんね。なぜなら、どの面も出る確率は一定だからです。これを波に応用すればいいだけです
@@はるぅ-y7u なんも答えてなくて草
大学入学するといきなり出てくるのは有名なバグ
パッチはない
第3講は何の講義だろう、、、楽しみです!
お楽しみに〜!
7:40の辺りでこんなことを言っていますね。
「新しい物理においては論理の飛躍も必要・・・これを信じてほしい」
物理学にあって信じるとは何事。
どんなときに信じることが求められるのでしょう。
結局物理も信仰なのかな?
このあたりのこと一度深く語っていただきたいです。
ここでは「(教育的に一旦)信じてほしい」という意味です。
しかし、物理は数学と違って原理から1つの答えに行き着くわけではないので(現実を反映したものでなければならない)
言ってみれば「無数の実験に裏打ちされたこの世で最も信憑性のある"信仰"」です
やはり信仰でしたか。
物理も数学もオタクになると皆信仰ってゆーやつもいます。
ここのコメント欄の圧倒的オタク感にちょっと感動
どのチャンネルよりもすごいよ多分
青山マルゲリータ
理由は簡単。
たくみさんは質問に答えるから。
言いっぱなしで基礎に踏み込まない動画が殆どの他とは違うからね。
議論が深まる。
遠入7kamui25
確かに
真面目な話、たくみさん凄いと思う
ファボゼロのボケの魅力だけじゃない
偉ぶらないところもいい感じ
青山マルゲリータ
ははは、信奉者になってますね😉✨
確かに見識が広く視線が身近ですね。
僕は院の経験は無いのでそれが一般的なのか、或いはたくみさんの個人的な資質なのか判断できないけど硬軟織り混ぜて見識が広い。
それに、視聴者が大人(たとえ実際は成人ではなくとも)であることも大きいね。偉ぶる(=子供にハッタリをかますような)必要がない。
これからも期待❗
ですね。
遠入7kamui25
うわっ、そうか!
自覚がなかったけど信者になってたんだ
今後は布教活動にいそしみます
楽しい講義ありがとうございます。
空間のある点Pに物質Aがあるとすると、それと全く同時刻に点Pには別の物質Bが存在できません。この物質Aをどんどん小さくして微小領域を考えた場合、物質または粒子などの空間点の占拠性はどのサイズまで認識できるでしょうか?空間占拠と量子の二重性とは関係ありますでしょうか。
粒子はゼロ点振動(めちゃちょっとの揺らぎ)をしている為、相対性理論に従い時間は不確定となり同時刻に存在するという事はないと思うのです。(適当)
運動量がih∇じゃなくて-ih∇なのに納得がいきません。。
どれだけ勉強したらこんな理解できるんだ?
(2)の波動関数が一定になってほしい理由がわからないです。教えていただけませんか
位置はしっかり定まっていないから確率を考えるということかな?
俺もそこだけ理解できんかった
この動画見てるのにモテる俺様は、法則を逸している。
涙拭けよ
2階偏微分する理由がわかった
ヨビノリのホームページでおすすめされている本を自力で読んでみて混乱してから動画を見るとすっきりわかります!
運動量pの演算子化(量子化)を行った時、符号がマイナスになる理由はちゃんと勉強すると分かるんですかね…
単に置き換えるだけであれば符号はプラスでも困らない気がしたのですが…
ψ(x、t)を一行の右辺であらわしたいから複素数i が出てくるの?
もし二行で表現すれば実数平面でもいいんじゃないのか。また
x=f(t)
であらわせば実数でも二次元デカルト平面であらわせるんじゃないのか。通常は、tの関数として、
y=f(t)
x=g(t)
でいいでしょう?
「複素平面」や「オイラーの公式」なんていらないじゃん。
複素数一個 ( C^1) と実数二個 (R^2) は同等なので、おっしゃるとおりです、R^2 でかけます。しかし、この場合、C^1 では i という複素数を掛けるよいう簡単な演算を、R^2 では行列を使って表さないといけない。かなり面倒なのです。なので普通、複素数を使います。
I LOVE quantum mechanics!!!!
だがもう着いていけない…w何回も見直します。
えへへ
今、無機化学を学んでいるのですが、量子力学を既知のものとして扱うため、無機化学の学習をすすめつつ、量子力学も学びたいと思っています。
量子力学を割としっかりとやりたいのですが、おすすめの参考書はありますか?
概要欄を参考にしてみて!
本当に一生のお願いなので複素関数論やってくださいお願いします。
複素関数論もやるぜ〜
不確定による予定調和を確率で予想するんですか?
spinについてのゼミを取ったのですが、出てくるのは、ほとんど行列でした。なんなんですか?
参考までに量子力学1のテストでたとこひっぱりだしてみました。
・有限の井戸型ポテンシャルの問題
・エーレンフェストの定理の証明
・異なった固有エネルギーをもつ規格化された波動関数の期待値の計算
・物理量の行列表現の問題
・水素原子の波動関数の問題(ざっくりしすぎですよね...すいません。疲れちゃいました。。。)
量子力学2のテストはどっかへ行きました。すいません。
情報せんきゅ〜!!
これってどの大学も一年生でやるの?流石に分からなすぎてまずい、、、
復習の波の式おかしくね?
P(太文字)→-ih∇のところがよく分かりません。どうしてih∇ではダメなのでしょうか。
ただ、とても分かりやすく面白いです!