Linear Regression and Multiple Regression

Поділитися
Вставка
  • Опубліковано 16 лис 2024
  • In this video, I will be talking about a parametric regression method called “Linear Regression” and it's extension for multiple features/ covariates, "Multiple Regression". You will gain an understanding of how to estimate coefficients using the least squares approach (scalar and matrix form) - fundamental for many other statistical learning methods.
    ⭐ Coursera Plus: $100 off until September 29th, 2022 for access to 7000+ courses: imp.i384100.ne...
    MATH COURSES (7 day free trial)
    📕 Mathematics for Machine Learning: imp.i384100.ne...
    📕 Calculus: imp.i384100.ne...
    📕 Statistics for Data Science: imp.i384100.ne...
    📕 Bayesian Statistics: imp.i384100.ne...
    📕 Linear Algebra: imp.i384100.ne...
    📕 Probability: imp.i384100.ne...
    OTHER RELATED COURSES (7 day free trial)
    📕 ⭐ Deep Learning Specialization: imp.i384100.ne...
    📕 Python for Everybody: imp.i384100.ne...
    📕 MLOps Course: imp.i384100.ne...
    📕 Natural Language Processing (NLP): imp.i384100.ne...
    📕 Machine Learning in Production: imp.i384100.ne...
    📕 Data Science Specialization: imp.i384100.ne...
    📕 Tensorflow: imp.i384100.ne...
    INVESTING
    [1] Webull (You can get 3 free stocks setting up a webull account today): a.webull.com/8...
    More on Matrix Calculus: atmos.washingt...

КОМЕНТАРІ • 191

  • @xavierfournat8264
    @xavierfournat8264 4 роки тому +6

    Fantastic work. Usually all tutorial videos about linear regression or multiple regression are simply giving the formulas out of nowhere, without explaining the rational in the background. Thanks for taking the time for diving through the underlying maths :)

  • @speakers159
    @speakers159 3 роки тому +8

    Pretty amazing, especially since nobody really covers the mathematics behind ML, really appreciate the math based content.

    • @CodeEmporium
      @CodeEmporium  3 роки тому +1

      Yesss! Math is underappreciated

    • @joelwillis2043
      @joelwillis2043 9 місяців тому +1

      this is a very well made video but this is always covered in statistics

  • @martinsahmed9107
    @martinsahmed9107 6 років тому +2

    This exposition is timely. I have battled over the disappearance of Y transpose Y in the matrix approach of a least squares for months until I came across this video. This is awesome. I am speechless.

  • @arpitbharadwaj8799
    @arpitbharadwaj8799 4 роки тому +25

    after multiplying and opening the brackets at 9:00 third term of the resultant should have transpose of B hat and not just B hat

  • @sanathdas4071
    @sanathdas4071 4 роки тому +3

    very well explained. I have been searching such video for many days. Now, the concept is crystal clear.

  • @sidharthramanan6780
    @sidharthramanan6780 6 років тому +59

    This is a great video - I was looking for the math behind calculating the co-efficients in multiple linear regression and this explains it perfectly. Thank you!

    • @CodeEmporium
      @CodeEmporium  6 років тому +2

      Thanks Sidharth! Glad it helped! Mind sharing the video to help others like you? :P

    • @sidharthramanan6780
      @sidharthramanan6780 6 років тому +3

      Thank you for the video! And I'd love to share it with others :)
      Also, you just got a subscriber! Let's see you get to 1K soon !

    • @CodeEmporium
      @CodeEmporium  6 років тому +2

      Thank you! Much Appreciated! I'm trying to upload more regularly than I have done in the past. There should be a lot more where that came from very soon.

    • @sidharthramanan6780
      @sidharthramanan6780 6 років тому

      Yup! Any platform I can network with you on by the way? Quora for example?

    • @CodeEmporium
      @CodeEmporium  6 років тому +1

      Sidharth Ramanan Quora is good. I'm under the name "Ajay Halthor".

  • @bluejays440
    @bluejays440 2 роки тому +3

    Excellent video, highly illuminating to finally see a comprehensive explanation of things that are too often left unexplained. I wish far more people, books, and videos explained statistics in similar detail.

  • @yuxiongzhu4249
    @yuxiongzhu4249 5 років тому +4

    Wow! This is the best video to quickly understand the derivation of linear regression formulas!

  • @ledzeppelin1212
    @ledzeppelin1212 3 роки тому +2

    Needed some refresher on a math class from grad school, and this really hit the spot. Thank you!

  • @alphatakes
    @alphatakes 2 роки тому

    this is the best video on multiple linear regression

  • @Anonymous-ho1mt
    @Anonymous-ho1mt 5 років тому +1

    I have tried many ways to find a decent derivation for multiple regression, I found the key term is understanding matrix derivation rules which I was missing all those times. this is first time I got the clear understanding of the formula. Thanks a lot.

  • @kerolesmonsef4179
    @kerolesmonsef4179 4 роки тому +8

    after week of searching . finally i found you . Thank you so much
    great explanation . keep going on

    • @CodeEmporium
      @CodeEmporium  4 роки тому +1

      The search is over. Join me in turning this world into -- nah just kidding. Glad you Finally found me. Hope you stick around

  • @donaldngwira
    @donaldngwira 2 роки тому

    One of the best explanations on this topic. And the presentation is superb

  • @mustafizurrahman5699
    @mustafizurrahman5699 2 роки тому

    Splendid and now words are sufficiently enough for such lucid explanation

  • @hyphenpointhyphen
    @hyphenpointhyphen 11 місяців тому

    I am binging the concepts and might forget to like - great channel.

  • @anandachetanelikapati6388
    @anandachetanelikapati6388 5 років тому +2

    Excellent explanation with precise terminology!

  • @jugglingisgreat
    @jugglingisgreat 6 років тому +1

    You explained this 1000000000000000000000000000x better than my professor. Thank you!

    • @CodeEmporium
      @CodeEmporium  6 років тому

      Ryan Smith Thanks! So glad it was useful!

  • @MrStudent1978
    @MrStudent1978 4 роки тому +1

    Very nice explanation! Very clear! I was looking for exactly the same.

  • @kuntsbro4856
    @kuntsbro4856 6 років тому

    Thanks a lot. This is the most comprehensive regression video on UA-cam.

    • @CodeEmporium
      @CodeEmporium  6 років тому +1

      Kunt's Bro Thanks! Regression is an important topic, thought I'd take time explaining it

  • @kastenkarsten
    @kastenkarsten 2 роки тому

    Incredible video for the derivation!

  • @JAmes-BoNDOO7
    @JAmes-BoNDOO7 4 роки тому

    Finally a video which makes perfect sense. Thanks a lot bro.

  • @gcumauma3319
    @gcumauma3319 3 роки тому

    Excellently explained. Very lucid

  • @ashlee8140
    @ashlee8140 5 років тому +2

    This is a great video and explained things so clearly! Thanks!

  • @CK-vy2qv
    @CK-vy2qv 5 років тому +1

    Excellent!
    Very nice see the scalar and matrix approach :)

  • @areebakhtar6422
    @areebakhtar6422 Місяць тому

    This is one of the best videos

  • @capnic
    @capnic 5 років тому +1

    Wonderful video! very useful and clear!

  • @trackmyactivity
    @trackmyactivity 6 років тому +8

    Amazing, thanks to the map you just drew I feel confident to learn the deeper concepts!

  • @souravdey1227
    @souravdey1227 3 роки тому

    Extremely clear. Bang on!

  • @FindMultiBagger
    @FindMultiBagger 6 років тому +1

    Hats of for your efforts ! Really Fun way to learn algorithms, Please post more videos of other machine learning algo.

  • @leochang3185
    @leochang3185 3 місяці тому

    At 11:10, the quadratic form of matrix differentiation should be x^T(A^T + A). Under the condition of A being symmetric could the derivative be 2 x^T A (as being used in the last term of d(RSS)/dx).

  • @elishayu8002
    @elishayu8002 5 років тому +1

    Super helpful and very clear! Thank you so so much!

  • @mike_o7874
    @mike_o7874 4 роки тому +1

    Great video, exactly what i was searching for,
    how did they get that matrix equation was exactly what i needed!
    thanks a lot man!

  • @satyendrayadav3123
    @satyendrayadav3123 4 роки тому +1

    Hands down my dawg❤️❤️ Very well explained

  • @anujlahoty8022
    @anujlahoty8022 5 років тому +2

    This video just made my day.
    Absolutely loved it...

  • @carolyneatieno1927
    @carolyneatieno1927 4 роки тому

    This was really helpful. I'm taking a unit on Data mining with no statistics background. Thank for sharing your knowledge 👊

  • @swapnilborse3150
    @swapnilborse3150 4 роки тому +1

    Thanks....put more videos on regression analysis

    • @CodeEmporium
      @CodeEmporium  4 роки тому +1

      Glad you enjoyed it! Will think of more Regression based videos in the future

  • @jean-michelgonet9483
    @jean-michelgonet9483 4 роки тому +7

    In minute 10:27: X is mx1 and A in mxn. The 3rd differentiation rule is about y = X*A. But, given the sizes of the matrices, how can you multiply X*A?

    • @noelcastillo3369
      @noelcastillo3369 2 роки тому

      I have the same question. Were you able to clear it up?

    • @xiaodafei4738
      @xiaodafei4738 8 місяців тому

      here the differentiation rule should be: let scalar y=x^T A, then dy/dx = A^T
      It's nice that the video shows some matrix differentiation rules, but I recommend the more serious propositions in: atmos.washington.edu/~dennis/MatrixCalculus.pdf

  • @amineelfarssi3902
    @amineelfarssi3902 5 років тому

    Very clear explanation … better than doing it by considering the projection on the model space and using the projection formula (t(X)X)^-1t(X)Y

  • @baa3124
    @baa3124 4 роки тому

    thank you so much from korea

  • @user-gn7op1nq3d
    @user-gn7op1nq3d 6 років тому +3

    Thanks! You just saved my life!

    • @CodeEmporium
      @CodeEmporium  6 років тому

      Raquel Morales Anytime. Saving lives is what I do.

  • @NEOBRR
    @NEOBRR 3 роки тому

    Thanks, this is an amazing video. It was very helpful.

  • @krishnachaitanyakr1237
    @krishnachaitanyakr1237 4 роки тому

    Very well explained. Thank you.

  • @DM_musik-01
    @DM_musik-01 2 роки тому

    Thank you very much it was very helpful

  • @tsehayenegash8394
    @tsehayenegash8394 2 роки тому

    really nice explanation you have deep knowledge. hoa can we minimize the error term?

  • @MOTIVAO
    @MOTIVAO Рік тому

    Amazing work

  • @benisbuff
    @benisbuff 4 роки тому

    Great explanation

  • @MrDiggerLP
    @MrDiggerLP 5 років тому

    My friend, you Saved my Bachelorpresentation.

  • @andrewzacharakis8583
    @andrewzacharakis8583 Рік тому

    great job man !

  • @sergeyderbeko9954
    @sergeyderbeko9954 3 роки тому

    This video is so good, it explained several weeks of a course to me in 12 minutes smh

  • @amogh2101
    @amogh2101 4 роки тому +2

    Is there something wrong at @8:58? Shouldn't B(hat) be B(hat)(Transpose)?

  • @dellazhang5785
    @dellazhang5785 2 роки тому +1

    Super good

  • @ashokpalivela311
    @ashokpalivela311 4 роки тому

    Very well explained!! Tq❤

  • @ellenma3523
    @ellenma3523 3 роки тому +2

    beginning from 8:54 the RSS should have the third term as -(β_hat)^T X^T y instead of -(β_hat) X^T y, the transpose sign is missing here

    • @nguyenkuro3827
      @nguyenkuro3827 3 роки тому +1

      You're Right. And I think it should be:" y=x^T.A => dy/dx = A" .

  • @snehashishpaul2740
    @snehashishpaul2740 6 років тому

    Very nicely explained

  • @zachc5261
    @zachc5261 Рік тому

    Great video, thanks for your effort 😁
    I just have two questions:
    1. in the last RSS equation, why is T removed from beta_hat in the third term
    2. how is y = xA feasible given x has dimension (m x 1) and A has dim (n x m)
    Appreciate your help please. Thanks!

  • @tomarkhelpalma138
    @tomarkhelpalma138 5 років тому

    Way too cool!!! I am enjoying this video!

  • @lucaslopes9907
    @lucaslopes9907 6 років тому +1

    Thank you! It helped me a lot.

  • @k_anu7
    @k_anu7 4 роки тому

    1 question.
    The method that you described above is of normal equation as of andrew ng machine learning course. The other way to find coeff. are gradient descent, BFGS, L-BFGS etc.
    Correct me if I am wrong.

  • @Rigou27
    @Rigou27 3 роки тому +1

    There's a mistake at minute 9:00, the third term of the expanded version of RSS is -(beta' x' y)

  • @youcefyahiaoui1465
    @youcefyahiaoui1465 2 роки тому

    In your logistic regression, I am not sure how you came up with the two exponents when you formed the two product of the product of p(x) and 1-p(x)

  • @juanitogabriel
    @juanitogabriel 4 роки тому +1

    Nice video. What software do you use for writing that math expressions? I mean, is it editor equations from ms word? Thank you.

  • @MrKaryerist
    @MrKaryerist 6 років тому +4

    Great video! Probably the best in explanation of math behind linear regression. Is there a way to do multiple non-linear regression?

  • @rajeshsoma143
    @rajeshsoma143 2 роки тому

    9:40 How does the third formula work?
    Here, the dimensions of xA do not satisfy the condition for matrix multiplication

  • @PetaZire
    @PetaZire 3 роки тому

    thank you, you also saved my life :)

  • @akzork
    @akzork 2 роки тому

    Can you upload a pdf of these formulae you shows in this video?

  • @tmrmbx5496
    @tmrmbx5496 4 роки тому

    Good job, thanks

  • @ahmedmarzouki3991
    @ahmedmarzouki3991 5 років тому +1

    thank you very much for this amazing video, it was really helpful
    do you have any other videos about : polynomial regression and non linear regression ?

  • @DiegoAToala
    @DiegoAToala 4 роки тому

    Great math , thank you

  • @nilankalord5974
    @nilankalord5974 5 років тому

    Great video, thank you!

  • @rajinfootonchuriquen
    @rajinfootonchuriquen 2 роки тому

    Something i don't understand is this: in simple linear regresión, you take the mean of square of error, but in múltiple regresión, what happend with taking the mean?
    X and y in the result fórmula have components with the mean?

  • @raihanahmimi8233
    @raihanahmimi8233 4 роки тому +2

    27.6K Subscriber on 13 July 2020... is that close enough from your prediction?

  • @cghale3692
    @cghale3692 5 років тому +1

    when u removed the bracket...what happened to B transposition and X transposition while multiplying with Y? B transposition is not there just B is there ...the last line of simplification ?

    • @xofjo6239
      @xofjo6239 4 роки тому

      why is that, I am very confused

  • @xeeeshaunali
    @xeeeshaunali 4 роки тому

    Which book you consulted??

  • @pulgasbaez6580
    @pulgasbaez6580 4 роки тому

    You're the GOAT

  • @Dra60oN
    @Dra60oN 6 років тому +3

    Hey, in 2nd example, you got y = xA, how can you even multiply those two when dimensions don't match? (m x 1) * ( n x m) , thus 1 != n
    Similar for 4th example where you got y = transpose(x) Ax ... I think A should be square matrix in this case (mxm).

    • @CodeEmporium
      @CodeEmporium  6 років тому +2

      2nd example: y = Ax, not xA.
      4th example: You're right here. x^T A x has shape (1 x m) *(n * m)*(m*1). This is true if n = m i.e. A is a square matrix. Good catch! Should have mentioned that. In the derivation, we use it with X^T X -- which is square.

    • @Dra60oN
      @Dra60oN 6 років тому +1

      Hey,
      sorry my typo,I was referring to the 3rd example, y = xA, not the 2nd one.
      And also are you sure that the last term B^T * X^T * X * B is the case of your 4th example. Because you can rewrite that expression as (X*B)^T * (X * B) and then it's a norm squared of matrix, and you say g(X) = X * B, and then you can apply derivative with respect to beta given by this formula: 2 * g(X)^T * d(X*B) / dX, which in this case would yield the same result, so after all you might be correct as well.
      All the best.

  • @chaosido19
    @chaosido19 Рік тому

    I come from Psychology and am following data science courses rn. The completely different way of approaching regression was a mystery to me, but this video helped me a lot. I do feel like I should practise stuff like this myself too, do you have any suggestions for places where to find exercises.

    • @CodeEmporium
      @CodeEmporium  Рік тому

      Thanks for commenting and watching! Maybe a textbook might be good for establishing a foundation. You can check out the “Introduction to Statistical Learning”. Aside from that I have I lol playlist on linear regression, though I admit it hops around some concepts. It still might be worth your watch.

  • @BlackJar72
    @BlackJar72 6 років тому

    Good, but I think I need to review some general math and sit down to work it out -- solving its not hard, but its good to know why it works.

    • @CodeEmporium
      @CodeEmporium  6 років тому

      For sure. One can always use builtin libraries to code it in a single line. But understanding why it works the way it does will help understand when to use it.

  • @peacego624
    @peacego624 3 роки тому

    Thanks

  • @purvanyatyagi2494
    @purvanyatyagi2494 4 роки тому

    Even the most simple things are hard to understand in depth

  • @deeptigupta518
    @deeptigupta518 4 роки тому

    Can you give us the reference for the matrix differentiation used here?

  • @christophereicher3928
    @christophereicher3928 6 років тому

    Thank you!

  • @surajjoshi3433
    @surajjoshi3433 3 роки тому

    9:44 Actually it should be 2AX if A is a symmetric matrix, am i correct ??,help me anyone please

  • @eewitht3190
    @eewitht3190 3 роки тому

    amaizing. thanks

  • @yunqianggan2906
    @yunqianggan2906 6 років тому

    Thank you so much, this video helps a lot :)

    • @CodeEmporium
      @CodeEmporium  6 років тому +1

      Yunqiang Gan Thanks! Glad you liked it!

  • @surajjoshi3433
    @surajjoshi3433 3 роки тому

    Why y predicted=beta hat X??
    Instead Beta not should also be included

  • @1UniverseGames
    @1UniverseGames 3 роки тому

    How can we obtain intercept and slope of B0 and B1 after shifting line l to l'

  • @runethorsen6230
    @runethorsen6230 Рік тому

    Is it possible that there is a little error at 12.54 min. 3'rd term of RSS: beta should be transposed?

  • @fernandoluis53
    @fernandoluis53 5 років тому +43

    this video made me more confused.

    • @Dontonethefirst
      @Dontonethefirst 4 роки тому +3

      It's mostly for ML shit it's actually really helpful

  • @Wisam_Saleem
    @Wisam_Saleem 6 років тому +1

    GREAT!

  • @troxy1935
    @troxy1935 4 роки тому

    why for calculate b_1, the 1/n, becomes n?

  • @BHuman2024
    @BHuman2024 Рік тому

    8.54 min: last line 3rd term, I cannot match, could anybody clear me, please?

  • @ananthakomanduri1567
    @ananthakomanduri1567 5 років тому

    THANKS

  • @medalighodhbani5927
    @medalighodhbani5927 3 роки тому

    Is there a video that explains how this "min arg" work graphically? like how it actually minimizes the residuals

    • @norbertramaj3024
      @norbertramaj3024 3 роки тому

      ....don't tell me you also have AMS 210 finals?

    • @medalighodhbani5927
      @medalighodhbani5927 3 роки тому

      @@norbertramaj3024 nope, im actually from Tunisia, not the states, but there are similar materials between AMS and what i study.

  • @gaiacampo5502
    @gaiacampo5502 2 роки тому

    Minute 8:54. How can the third term be minus beta-hat X-transposed y?? I thought it should've been minus beta-hat-TRANSPOSED X-transposed y... can you help me?

    • @CodeEmporium
      @CodeEmporium  2 роки тому

      You're mostly right. Might have missed that transpose out. There is a lot to keep track of here. If matrix multiplication works out, then that's good :)

    • @gaiacampo5502
      @gaiacampo5502 2 роки тому

      @@CodeEmporium thank you so much! your video is pure gold to me :) lots of doubts finally solved :)

    • @CodeEmporium
      @CodeEmporium  2 роки тому

      Glad to help :)

  • @deeptigupta518
    @deeptigupta518 4 роки тому

    How did you get y=xA as A transpose ? As both x A doesnt have the dimensions to get multiplied?

  • @techchit6797
    @techchit6797 4 роки тому

    Does the inverse( X*transpose(X)) always exists in the formula? Why?

  • @vishu8770
    @vishu8770 Рік тому

    Thanks a lottt

  • @juandesalgado
    @juandesalgado 3 роки тому

    It's a pity we have not defined what would the inverse of a non-square matrix would be.
    If we had, (XT . X)^-1 . XT . y would be X^-1 . XT^-1 . XT . y = X^-1 . y , and I'd have more time to play video games.

  • @mohannadbarakat5885
    @mohannadbarakat5885 4 роки тому +1

    why is sum(sqr(e)) = e^T * e

  • @norbertramaj3024
    @norbertramaj3024 3 роки тому +2

    well' it's almost 2020 and you have almost 40k subs. This what you predicted?