Solving x(x(x+1)+1)+1=0

Поділитися
Вставка
  • Опубліковано 18 січ 2025

КОМЕНТАРІ • 13

  • @bprpmathbasics
    @bprpmathbasics  19 годин тому +1

    How to really solve sin(x^2)=sin(x)
    ua-cam.com/video/gCOWo13xxzc/v-deo.html

  • @amlananshumatsahu5850
    @amlananshumatsahu5850 15 годин тому +3

    Expand it: x³ + x² + x + 1 = 0
    Write it as (x⁴ - 1)/(x-1) = 0
    So, x⁴ - 1 = 0, x ≠ 1
    x⁴ = 1, x ≠ 1
    Therefore x = -1, i, -i

  • @kdog3908
    @kdog3908 18 годин тому +1

    Thank you!

  • @alphazero339
    @alphazero339 18 годин тому +3

    You can put how many iterated x you want and I think it will always be easy to solve using geometric series
    Doing that you find if theres N many x's in the equation (now we have 3) the solutions are all (N+1)th roots of unity except 1

    • @ZDTF
      @ZDTF 18 годин тому

      What's a geometric series

    • @ZDTF
      @ZDTF 18 годин тому

      Alpha zero😮

    • @alphazero339
      @alphazero339 18 годин тому

      @@ZDTF you can google it its very useful sum of the form xⁿ+x²ⁿ+x³ⁿ+x⁴ⁿ+x⁵ⁿ...
      Usually we use n=1 and the key is that if you multiply the series by 1-x, first terms cancels second, second cancels third, third cancels fourth and so on..

  • @rainerzufall42
    @rainerzufall42 4 години тому +1

    1:10 🛑‼x³ + x² + x + 1 = 0. If we had (x - 1) times this one,
    it would be x^4 - 1 = 0 or x^4 = 1 with the solutions { +/-1, +/-i }.
    Thus the original equations has the solutions { -1, +/-i }. ✅🏁

  • @Brid727
    @Brid727 19 годин тому

    what i did is i distributed the x all the way at the front of the parentheses without expanding the inside and by doing so i immediately noticed that it factors to (x^2+1)(x+1) and ofc the answers are -1, +/-i

  • @Mathsfighters0707
    @Mathsfighters0707 19 годин тому

    🎉🎉🎉

  • @Starstrike149
    @Starstrike149 9 годин тому

    But -1 works

  • @ΓιΘωεγ
    @ΓιΘωεγ 19 годин тому

    I have a big π²

  • @subavajra
    @subavajra 19 годин тому +1

    1 minute ago