How Ramanujan proved his master theorem

Поділитися
Вставка
  • Опубліковано 10 лют 2025
  • • A RIDICULOUSLY AWESOME...
    • Ramanujan's master the...
    15 percent off everything using the code MATHS505 on Advanced MathWear:
    my-store-ef6c0...
    Complex analysis lectures:
    • Complex Analysis Lectures
    If you like the videos and would like to support the channel:
    / maths505
    You can follow me on Instagram for write ups that come in handy for my videos:
    ...
    My LinkedIn:
    / kamaal-mirza-86b380252

КОМЕНТАРІ • 30

  • @Calcprof
    @Calcprof Рік тому +25

    The normal proof (whatever that is) that I know is based on the operational form of Taylor's theorem: f(x+ε) = e^(ε(d/dx)) f. A gap in your proof is that you have to show, since, in the proof, g is given first, that given any φ satisfying the hypotheses, we can solve for an analytic g satisfying g(a + hr^s) = φ(s)

    • @maths_505
      @maths_505  Рік тому +9

      Not a big fan of that either. Hardy's proof using residues is brilliant beyond measure.

  • @mcalkis5771
    @mcalkis5771 Рік тому +7

    Ramanujan seriously needs some more love. Hope yo see you cover more of his amazing work.

  • @ahmetalicetin5331
    @ahmetalicetin5331 Рік тому +3

    Thanks. I have been tackling with this for a while and it is nice to see a video about it from a high quality channel like you.

  • @MrWael1970
    @MrWael1970 Рік тому +1

    Thanks for your effort

  • @123bluestorm1
    @123bluestorm1 Рік тому +2

    Hey, I've been following your videos for a long time now. I spent last summer watching your videos, and it has been a blast getting better at solving integrals. I do wonder if you have any recommendations for books that I can use to get familiar with the techniques you use? It would be a great pleasure, thank you so much.

    • @maths_505
      @maths_505  Рік тому

      I'll mention some in a Q/A video I plan on doing later this month

  • @aravindakannank.s.
    @aravindakannank.s. Рік тому +5

    we want g.h.hardys proof as soon as possible ❤

  • @ashishraje5712
    @ashishraje5712 Місяць тому

    Very nice

  • @illumexhisoka6181
    @illumexhisoka6181 Рік тому +3

    Why is it that important when it have this many conditions ?

    • @maths_505
      @maths_505  Рік тому +7

      The conditions aren't all that bad tho.

    • @Risu0chan
      @Risu0chan Рік тому +2

      I suppose we need them so that we can safely swap the integral and summmation signs (with the dominated convergence theorem, perhaps? I'm not sure)

  • @csilval18
    @csilval18 Рік тому

    Not a big fan of just interchanging series and integrals, at least comment on why it's possible (Fubini, dominated convergence, and why the conditions are met)

  • @victormarchant217
    @victormarchant217 Рік тому

    I can't wait to see Hardy's proof

  • @RagaGian
    @RagaGian Рік тому

    What kind of transformation?

    • @maths_505
      @maths_505  Рік тому

      Mellin transform

    • @RagaGian
      @RagaGian Рік тому

      @@maths_505 Thanks. That's great

  • @juandiegoparales9379
    @juandiegoparales9379 Рік тому

    I have to see the proof by hardy!

  • @adhamcomstock4409
    @adhamcomstock4409 Місяць тому

    Balsagna chin

  • @Noam_.Menashe
    @Noam_.Menashe Рік тому +7

    I'm sorry but your r's look a lot like gammas.

  • @nightmareintegral5593
    @nightmareintegral5593 Рік тому

    Wanna better minature?
    I sended you.

  • @ELBARTO2023-bg1rw
    @ELBARTO2023-bg1rw 2 місяці тому

    😂

  • @petterituovinem8412
    @petterituovinem8412 Рік тому

    first

  • @nullvoid12
    @nullvoid12 Рік тому

    Can someone provide a context?

    • @maths_505
      @maths_505  Рік тому

      Context for what mate?

    • @nullvoid12
      @nullvoid12 Рік тому

      @@maths_505 what is this theorem about?

    • @maths_505
      @maths_505  Рік тому

      @@nullvoid12 it's primarily used to derived melin transforms of functions.