S09.1 Buffon's Needle & Monte Carlo Simulation

Поділитися
Вставка
  • Опубліковано 30 лис 2024

КОМЕНТАРІ • 31

  • @mahmoudramzy4878
    @mahmoudramzy4878 5 років тому +33

    This is the best and most in depth video I found about the problem. Also the only one that doesn't make unnecessary simplifications. Thank you.

  • @morganjones7428
    @morganjones7428 3 роки тому +6

    An absolutely beautiful and profound result explained by an exceptionally talented teacher!!

  • @deepakjoshi1426
    @deepakjoshi1426 5 років тому +9

    All the videos of this course are awesome. All the concepts are so easy to understand in this course.
    John Tsitsiklis is amazing !!
    THANK YOU JOHN !! THANK YOU MIT !!

  • @vigneshrb2529
    @vigneshrb2529 6 місяців тому

    it blew my mind when I got to know we found the value of pi using complete randomness. Amazing problem and an amazing explanation.

  • @henrymiller5709
    @henrymiller5709 5 років тому +9

    great teacher does not say too many words,but everyword they say count

  • @pablock0
    @pablock0 Рік тому

    I'm loving these classes. This one is particularly good. Thanks professor Tsitsiklis and MIT.

  • @christianfunintuscany1147
    @christianfunintuscany1147 4 роки тому +7

    I agree the range of the variable x is 0

    • @PD-vt9fe
      @PD-vt9fe 3 роки тому +6

      Well, basically the range depends on what theta represents. In the video, theta is the smallest angle formed by the line and the needle. in your suggestion, it is the angle, not the smallest one, so 0

  • @brianwahome5789
    @brianwahome5789 5 років тому +5

    Thank you so much! And the accent makes it even better!

  • @LNJP13579
    @LNJP13579 4 роки тому +1

    Very nice example. Clarified a lot of fundamentals. Thanks for it.

  • @sannavig9566
    @sannavig9566 4 роки тому +1

    thank you for savig us, my lord

  • @totochandelier
    @totochandelier 5 років тому +5

    Some kind of magic

  • @amalbalabid5758
    @amalbalabid5758 2 роки тому +1

    Awesome! Thanks for your clever explanation.

  • @osmanakalin2442
    @osmanakalin2442 5 років тому +4

    Big thanks for this video. That help me from France 🇫🇷 thanks 🙏🏻

  • @asmaa.ali6
    @asmaa.ali6 3 роки тому +1

    16:10 : Supplementary* instead of complementary

  • @sagensoren55
    @sagensoren55 5 днів тому

    Very well explained sir

  • @shaileshwasti407
    @shaileshwasti407 2 роки тому

    So neat explanation

  • @a6kme
    @a6kme 11 місяців тому +1

    Why does x vary from 0 to d/2? Shouldn't it vary from 0 to d?

    • @vigneshrb2529
      @vigneshrb2529 6 місяців тому

      x is the distance from the nearest line. It is greatest when the needle mid-point is exactly at the mid-point of 2 lines.

  • @asmita6368
    @asmita6368 3 роки тому

    Thank you professor .

  • @topgunjinhyung
    @topgunjinhyung 2 роки тому

    Thank you

  • @magn8195
    @magn8195 3 роки тому +1

    How do you work out the uniform distribution of x and theta? What do you integrate?

    • @DaysAreOver
      @DaysAreOver 3 роки тому +3

      X has a range of [0, d/2]. So the uniform PDF should be 1/(d/2 - 0) = 2/d. Similarly, theta should be 1/(pi/2 - 0) = 2/pi.

  • @adityasahu96
    @adityasahu96 4 роки тому +2

    jesus !! wow

  • @ДаниилПопов-у3з
    @ДаниилПопов-у3з 4 роки тому +1

    This problem may be simplified by assuming a coin radius r instead of a needle. In this case we won't be needed in PDF at all and such problem will be solved geometrically. An interesting special case, isn't it? Moreover, there is a geometrical solution for the original problem.

  • @valor36az
    @valor36az 5 років тому

    Awesome

  • @jaydenou6818
    @jaydenou6818 Рік тому

    In 10:23, Can someone explain why P(X

    • @jaydenou6818
      @jaydenou6818 Рік тому +2

      essentially, the double integral represent the whole sample space (all the possibilities of the needles) if we do not set up lower & upper bounce , which means all the joint possibilities of f_{X,\theta} (x, \theta). However, we want to find P(X

  • @sangrams
    @sangrams 4 роки тому

    👌