Intro to Machine Learning (ML Zero to Hero - Part 1)

Поділитися
Вставка
  • Опубліковано 24 гру 2024

КОМЕНТАРІ • 398

  • @anakinskywalkerrr
    @anakinskywalkerrr 5 років тому +28

    This man explain what machine learning is in the simplest way I ever heard. Good one, keep it up

  • @AyshaFilms
    @AyshaFilms 3 роки тому +5

    As someone who had just begun self learning programming, this explanation about machine learning is very clear and understandable. Thank you!

  • @decryptifi2265
    @decryptifi2265 2 місяці тому +1

    Best intro to machine learning I have seen. Thanks a lot Laurence

  • @ici6308
    @ici6308 2 роки тому +5

    Laurence, you're just a genius. I have tried to understand that ML from many tutorials, but it's just from yours I really and simply understand.

  • @MisterPlatitude
    @MisterPlatitude 5 років тому +47

    Laurence, thank you so much for taking the time to put out such concise, intuitive walkthroughs. You manage to make everything going on behind the curtain really accessible and unintimidating!

  • @William_Clinton_Muguai
    @William_Clinton_Muguai 3 роки тому +1

    In traditional programming, we infer answers after rules act on data, but in ML, we infer rules after answers act on data. Got that really straight.❤️❤️❤️❤️

  • @jesjames
    @jesjames 2 роки тому

    You know those videos that you start watching and then get glued to them... :D Well done Laurence, in the first few seconds I wouldn't have bet on watching it

  • @shashankbarki7029
    @shashankbarki7029 5 років тому +33

    Was just waiting for this from Lawrence. I m learning machine learning daily and time to take this to next level. Thanks Lawrence and Google and tensor flow

    • @laurencemoroney655
      @laurencemoroney655 5 років тому +4

      Thanks, Shashank!

    • @M1ndV0yag3r
      @M1ndV0yag3r 3 роки тому

      @shashank barki would you mind sharing how you are learning ML?

  • @Themojii
    @Themojii 4 роки тому +10

    Subscribed after watching this. Love the way you explain. You explain the concept very clearly and also you add a little bit of the code which gives me a great preparation for the coding application. Keep up the good work Lawrence

  • @vishalrana1373
    @vishalrana1373 5 років тому +13

    Brilliant explanation Laurence.

  • @aytunch
    @aytunch 5 років тому +8

    Laurence keep more videos coming:) Was a pleasure watching and learning

  • @johnlao1469
    @johnlao1469 5 років тому

    Im really glad tensorflow by itself is doing tutorial right now.
    Because i have this research project that implements machine learning and it helps me to learn and understand each lesson about it.

  • @nathanas64
    @nathanas64 5 років тому +1

    This is one of the clearest explanations ever ! Great job!

    • @laurencemoroney655
      @laurencemoroney655 5 років тому +1

      Thanks!

    • @nathanas64
      @nathanas64 5 років тому

      Laurence Moroney what a service to humanity that google is releasing tensorflow to the public domain. The benefit that will come out of this -and i don’t mean financial - is immeasurable. It’s like IBM releasing the paper on FFTs in the 60s !!

  • @albertastillero1085
    @albertastillero1085 Рік тому +4

    Subscribed Sir Laurence! Thanks for the simple yet concise explanation in a short time.

  • @keithprossickartist
    @keithprossickartist 2 роки тому +2

    Thank You for explaining this so clearly and eloquently.

  • @brendonprophette8890
    @brendonprophette8890 3 роки тому +6

    my procrastination has transcended to new levels
    I am watching this instead of studying for my 2 finals or working on my 4 remaining projects
    with less than 2 weeks left to finish all of those things lol

    • @Intrinsion
      @Intrinsion 3 роки тому

      Did you finish?

    • @brendonprophette8890
      @brendonprophette8890 3 роки тому

      @@Intrinsion yea, only because my software development professor decided to make the final project optional

    • @LaurenceMoroney
      @LaurenceMoroney 3 роки тому +1

      Oops! Sorry about that! :)

  • @deborahayeni_
    @deborahayeni_ Рік тому

    Thanks. You just spiked my interest in this course

  • @fet1612
    @fet1612 5 років тому +2

    Hello, Laurence Moroney,
    Astounding presentation. How quickly and how brilliantly you put such a huge task look so simple. I must admire your ability. Keep up the good work, thumbs up here.

  • @venugopalt6861
    @venugopalt6861 3 роки тому +1

    This is awesome mike the best explanations i have ever made on Machine Learning and i got a feel and beauty of nerual network when i heard your class , great job , keep posting like these cheers

    • @LaurenceMoroney
      @LaurenceMoroney 3 роки тому

      Thanks so much! :)

    • @rohanmanchanda5250
      @rohanmanchanda5250 3 роки тому

      You're welcome kid.

    • @rohanmanchanda5250
      @rohanmanchanda5250 3 роки тому

      @@LaurenceMoroney I didn't notice it was actually you sir. This function cannot recognise polynomials like square equations or cubic. I provided it with xs as 1.0, 2.0...
      and ys as their square, but it never got any better than a loss of 6.2222, and if I entered 10, it gave me a value of 36.67...
      ???

  • @AlexeyArtamoshin
    @AlexeyArtamoshin 4 роки тому +4

    Extremely helpful explanation, thank you very much!

  • @sriti_hikari
    @sriti_hikari 4 роки тому +4

    That was a very good explanation, thank you!

  • @SK-lm2zs
    @SK-lm2zs 4 роки тому +2

    this video is soo good❣️
    I watched this many times to understand what ML is.
    I studied Matlab at University, this video is also good for review of ML😊

  • @khadijahalsmiere3718
    @khadijahalsmiere3718 5 років тому

    Wow , I’ve been waiting for such an opportunity to learn machine learning from an expert . Thank so much and keep it up , we need it for our big project GOD’s willing .

  • @florianeck6512
    @florianeck6512 4 роки тому

    finally some video that makes digging into the topic understandable.

  • @scientistgeospatial
    @scientistgeospatial 4 роки тому +12

    You're genius Laurence, for sure! Excellent demonstrations and brilliant examples.

  • @joseortiz_io
    @joseortiz_io 5 років тому +7

    I love these tutorials and videos that Tensorflow puts out. Super informative. Thank you Laurence, what a great video! You bet I'll keep watching these series! Have a fantastic day everyone!😁👍

  • @kamilpadula7152
    @kamilpadula7152 Рік тому

    this open for me new world

  • @ademolaorolu5930
    @ademolaorolu5930 2 роки тому

    Precise and Concise. Thank you Lawrence!

  • @bilboswaggins7629
    @bilboswaggins7629 4 роки тому +15

    Amazing video. Though I do feel the need to say that playing scissors with the thumb out is sketchy and looks like you are trying to straddle the line between scissors and paper.

  • @AshishChauhanYoungy
    @AshishChauhanYoungy 5 років тому +129

    Hey there Lawrence. Really good explanation. Thanks for putting together. Just wanted to ask how often these vids will come out?

    • @dimonfrekpdimonfrekp3008
      @dimonfrekpdimonfrekp3008 5 років тому +5

      www.coursera.org/instructor/lmoroney

    • @ohlssonster
      @ohlssonster 5 років тому +9

      Once per second

    • @laurencemoroney655
      @laurencemoroney655 5 років тому +16

      This series is 4 videos, coming out weekly

    • @javiersuarez8415
      @javiersuarez8415 5 років тому +2

      @@laurencemoroney655 4 is a small number. 😐. When is estimated second season release?

    • @LaurenceMoroney
      @LaurenceMoroney 5 років тому +19

      @@javiersuarez8415 Haha -- I haven't gotten around to filming a second season yet, but as they look like they're going to be popular, I should get moving on that... :)

  • @marcosdearruda77
    @marcosdearruda77 5 років тому +5

    Nicely done. Thank you so much for sharing this video with us,

  • @saedsaify9944
    @saedsaify9944 4 місяці тому +3

    The code is wrong. Not a good sign when the Hello World code from the official channel doesnt work.
    print(model.predict([10.0])) throws an error, you need to use something like
    print(model.predict(x=np.array([10.0])))

  • @koushikdatta5130
    @koushikdatta5130 5 років тому

    Loved the intro. Waiting for the next video.i was searching for such tutorial for long time, finally got one. Thanks tensor flow.

  • @jng711b
    @jng711b 3 роки тому

    Great explanation. I am taking Lawrence's courses in ML / Tensorflow. Very useful. Thanks so much!

  • @mihaelacosinschi
    @mihaelacosinschi Рік тому

    here's the code needed from the video, if anyone wants to try it out
    import tensorflow as tf
    from tensorflow import keras
    import numpy as np
    model=keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])])
    model.compile(optimizer="sgd", loss="mean_squared_error")
    xs=np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
    ys=np.array([-3.0, -1.0, 1.0, 3.0, 5.0, 7.0], dtype=float)
    model.fit(xs, ys, epochs=1100)
    print(model.predict([10.0]))
    I am an absolute beginner and wanted to run the code, but could only get errors at first.
    In case anyone needs this broken down, I added the first 3 lines that are necessary to run the tensorflow and keras libraries, installed previously via terminal.

  • @theprimordialdude1138
    @theprimordialdude1138 4 роки тому

    Very good explanation. Easy to understand. Continue the series

  • @quegiangson3786
    @quegiangson3786 4 роки тому +1

    It's so amazing explanation. Thanks a lot Lawrenece !

  • @aradaizlebeni1
    @aradaizlebeni1 Рік тому

    very good and simple lecture. thank you.

  • @acutu55
    @acutu55 2 роки тому

    Great Introduction!

  • @autosales3196
    @autosales3196 10 місяців тому

    Rinse spin repeat.×3 or X4 to remove one situation. ......I can do this. Thanks for the patience ☺️ God sure made a blessing in you!

  • @DatascienceConcepts
    @DatascienceConcepts 4 роки тому +16

    Nice explanation. I am also building a course on ML in Python (for a University) more from an implementation perspective. This surely helps!

  • @muhendishanimm
    @muhendishanimm 3 роки тому

    I really loved the videos then liked all before watching cos i am sure I will watch all :D inshaallah :D Thanks for yoru effort!

  • @rishishkumarnaik9954
    @rishishkumarnaik9954 5 років тому +1

    Hey Lawrence,
    its really a pleasure to learn from your videos. Waiting for more videos to come and take us deep into AI.

  • @압둘하미드이드리스
    @압둘하미드이드리스 8 місяців тому

    Great, more inquisitive on the subject

  • @psaikrishna90
    @psaikrishna90 4 роки тому

    Wow such a great explanation with a simple example. Thanks.

  • @donkeshwarkavyasree8632
    @donkeshwarkavyasree8632 3 роки тому +4

    This video's are literally making me feel fascinated to learn ML. You are definately life saver 🙏. Thanks a ton 👍

  • @nabhannoorish5100
    @nabhannoorish5100 4 роки тому

    Thanks for teaching this. You made this very easy

  • @gennadyplyushchev1465
    @gennadyplyushchev1465 5 років тому +2

    Great and simple video! Thank you!

  • @Pa-ow1nj
    @Pa-ow1nj 5 років тому +1

    please more of that its so good explained

  • @guyshur2688
    @guyshur2688 4 роки тому +3

    Great video. You mention the small error is due to uncertainty due to the low sample size, is it not possible that the model simply descended to a not quite accurate relationship? Granted the cause would still be low sampling but the main question is if the error is explicitly programmed to reflect uncertainty because the input could still be 19 and be labeled uncertain.

  • @thecandel5479
    @thecandel5479 4 роки тому

    You are very very good scientist. I thank you very much. I am from Jordan. I study master in computer and networks.

  • @zaknikov
    @zaknikov 5 років тому +1

    Very good explanation thank you

  • @NicO-cm2xo
    @NicO-cm2xo 5 років тому

    Awesome master teacher Lawrence.. now i need autoML to learn ML

  • @jfl1014
    @jfl1014 Рік тому

    Very good teacher thank you

  • @AbhishekKumar-mq1tt
    @AbhishekKumar-mq1tt 5 років тому +4

    thank u for this awesome video

  • @ashwinsenthilvel4976
    @ashwinsenthilvel4976 5 років тому +1

    Hi Lawrence,
    I am trying to implement same code with two inputs X1 and x2. I am finding difficulty in 1) how to specify x value like how the matrix of the two input should be. 2)what must be the input shape specified here. Could you please help with this.

  • @sidtv2542
    @sidtv2542 2 роки тому

    Videos like this > A $5,000 college course

  • @abdenourdjennane9309
    @abdenourdjennane9309 4 роки тому

    Thanks. I like this way of teaching.

  • @zhang20244
    @zhang20244 4 роки тому

    So nice , easy to understand , Thanks

  • @naduniranasinghe6593
    @naduniranasinghe6593 4 роки тому

    super explanation. you are a great teacher

  • @Arnau_0_0
    @Arnau_0_0 4 роки тому

    Really good explanation!

  • @KefyalewAbdella
    @KefyalewAbdella Рік тому +1

    can you give me the documentation, and if you would help me you con assist me to make it my final project

  • @logicfacts9964
    @logicfacts9964 5 років тому +1

    I didn't understood what exactly is input shape and why it is 1? Because is accepts our input array by only 1 value at the time or there is other reason? Also I can't understand how and why NN with just 1 neuron produces 18.99 instead 19 because 1 neuron means that it can predict only exact value and any deviation is inposible?

    • @laurencemoroney655
      @laurencemoroney655 5 років тому +1

      Input shape is 1, because we just want to predict the result for 1 value input (i.e. 10).
      Neuron won't get *exact* value because it deals in probabilities, not certainties, so the prediction is a very high probability that the answer is 19, but when evaluating that as a number you get something close to 19

  • @ConsultingjoeOnline
    @ConsultingjoeOnline 4 роки тому +5

    Great video! THANK YOU.
    I've been trying to get to this point for a while.
    Getting everything setup is a hurdle in itself. At least with OSX

  • @fahemhamou6170
    @fahemhamou6170 2 роки тому +1

    Thank you very much

  • @hemakumargantepallidataandai
    @hemakumargantepallidataandai 4 роки тому

    Awesome presentations skills.

  • @ericascheffel4527
    @ericascheffel4527 3 роки тому

    Excellent explanation, thank you very much!

  • @MikesTechCorner
    @MikesTechCorner 5 років тому

    In the math example we get a NAN when typing in other x values in the array like 100. Do you know why?
    from __future__ import absolute_import, division, print_function, unicode_literals
    import tensorflow as tf
    import numpy as np
    x = [-1.0, 2.0,4.0,6.0,7.0, 100.0]
    y = []
    x_test = [10]
    for i in x:
    y.append(i*2 +5)
    model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(units=1, input_shape=[1])
    ])
    optim='sgd'
    model.compile(optimizer=optim,
    loss='mean_squared_error')
    xs = np.array(x, dtype=float)
    ys = np.array(y, dtype=float)
    model.fit(xs, ys, epochs=500)
    print(model.predict(x_test))

    • @LaurenceMoroney
      @LaurenceMoroney 5 років тому

      Data should really be normalized when fed in for training, or the optimizer/loss won't work. We get away with it when we use small values, but that gets exposed at larger values. To do this you should normalize the training/test data and then retrain.

  • @TheCyberCraft
    @TheCyberCraft 4 роки тому

    Lawrence, great job man! thank you so much

  • @BiancaAguglia
    @BiancaAguglia 5 років тому

    Nice, clear explanations. This series is off to a good start. 😊 Looking forward to seeing more videos.

  • @the_bitcoin_guy
    @the_bitcoin_guy 4 роки тому +3

    I feel like Neo : "I know kung fu 🥋! " . That was so concise !!! Thank you very much ...

    • @LaurenceMoroney
      @LaurenceMoroney 4 роки тому

      haha! Thanks :)

    • @alex9046
      @alex9046 3 роки тому

      Laurence will do that to you lol, amazing teacher

  • @rajansaharaju1427
    @rajansaharaju1427 5 років тому

    eagerly waiting for part-2

  • @chrismorris5241
    @chrismorris5241 5 років тому

    Rules + data vs. answers + data. Pretty good.

  • @hobypd
    @hobypd 4 роки тому

    I have a question on something I don't understand: Dr. Moroney said that prediction is not perfect because the computer is trained for 6 values that form a straight line, but outside those 6 may be not straight (although it is highly probable that they are straight). I don't get this point: since it is a NN with only one neuron, so it has to be a straight line the prediction (it should be like a linear regression). Am I correct? Or did I interpret something wrong?

  • @dipankarkaushik5285
    @dipankarkaushik5285 5 років тому +8

    You missed 'tf.keras.' in the 1st line. So, model = tf.keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])]) will be the correct code.

  • @codewithluq
    @codewithluq 5 років тому

    very nice way of teaching

  • @fpgamachine
    @fpgamachine 5 років тому

    Excellent video! Thanks

  • @AnandBaburajan
    @AnandBaburajan 5 років тому +1

    Here's the working code:
    from tensorflow import keras
    from keras.models import Sequential
    from keras.layers import Dense
    import numpy as np
    model = keras.Sequential([keras.layers.Dense(units=1, input_shape=[1])])
    model.compile(optimizer='sgd', loss='mean_squared_error')
    x=np.array([-1.0,0.0,1.0,2.0,3.0,4.0], dtype=float)
    y=np.array([-3.0,-1.0,1.0,3.0,5.0,7.0], dtype=float)
    model.fit(xs,ys,epochs=500)
    x1=np.array([10.0], dtype=float)
    print(model.predict([x1]))

  • @aboriad15
    @aboriad15 5 років тому

    Excited for this series!

  • @regeleionescu935
    @regeleionescu935 5 років тому +1

    Hi, thank you for the great video! I have been playing around with your example using different sets of numbers. For example, I extended the first set from 1.0 to 12.0 and for the second set I used the days of the month(like 31, 28, 31, 30 etc). With a set of 12 pairs it worked fine. It managed to predict the 13th month as being 31 days. Then I wanted to be smarter and I extended the set of data to 24 pairs, basically repeating one year and I tried to predict the 25th and the 26th month length. The problem is that with 24 pairs of numbers the error keeps growing to infinite and the final result is NaN - I wonder why?

    • @laurencemoroney655
      @laurencemoroney655 5 років тому +1

      Yeah -- when you start using a lot of numbers the error rate grows, because the dataset isn't normalized.
      Try normalizing, then learning from the normalized values, and then denormalizing afterwards.

    • @regeleionescu935
      @regeleionescu935 5 років тому

      @@laurencemoroney655 Thank you very much for your kind answer!

    • @kvenkataraju
      @kvenkataraju 5 років тому

      @@laurencemoroney655 Hi, you mean normalizing the data? how to do that? is that by adding normlization layer?

  • @sabaal-jalal3710
    @sabaal-jalal3710 4 роки тому

    clear explanation thank you so much!

  • @camsolo2024
    @camsolo2024 5 років тому

    🌟 🌟 🌟 🌟 🌟 Wow! What a very clear and straight forward explination! Thank you!

  • @vidumini23
    @vidumini23 5 років тому

    Nice explanation. Thank you.

  • @SamuelLawson
    @SamuelLawson 6 місяців тому

    Running that code, I got an error: `ValueError: Unrecognized data type: x=[10.0] (of type )` -- fixed when I changed the predict() arg to `np.array([10.0])`

    • @skewd2528
      @skewd2528 5 місяців тому

      Do print(model.predict(np.array([10.0], dtype=float))) instead

  • @angeloabritaa
    @angeloabritaa 5 років тому +2

    Bom tutorial, aguardando continuação. Like from Brazil hu3br

  • @nomads-journey7345
    @nomads-journey7345 4 роки тому

    This is briliant !!!

  • @rohanmanchanda5250
    @rohanmanchanda5250 3 роки тому

    I love you guys!!

  • @noorsyyed
    @noorsyyed 5 років тому

    wow, ever since AI ML got my attention i have been looking for something like this, thanks @lmoroney for bringing this to us.

  • @jamesspencer3664
    @jamesspencer3664 3 роки тому

    Fantastic video thank you

  • @abdallahhussein5997
    @abdallahhussein5997 5 років тому

    Perfect explanation

  • @alexandeap
    @alexandeap 5 років тому

    Excelente explicación. Muchas gracias pero Dónde están los demás videos? Podría gentilmente compartirlos intente buscar el curso en coursera pero no lo encuentro a usted y seria bueno que comparte este curso en coursera.

    • @laurencemoroney655
      @laurencemoroney655 5 років тому +1

      Coursera Course: www.coursera.org/learn/introduction-tensorflow/
      Rest of the videos will be published on this channel

    • @alexandeap
      @alexandeap 5 років тому

      Ohh thanks very much for the information. Best regards.

  • @shajishajudeen8961
    @shajishajudeen8961 5 років тому

    Awesome video. Thank you!

  • @chickenway8053
    @chickenway8053 5 років тому

    Thank you so much. You save my life.

  • @sunilkb144
    @sunilkb144 4 роки тому

    i have typical use case such as to predict the value of y for a given x but the logic for calculating the value of y ( ie in this case y=2x-1) is changing on daily basis. can tensor flow can predict this kind of data

  • @DirkJanUittenbogaard
    @DirkJanUittenbogaard 9 місяців тому +2

    Great video Laurence! For me the code you used failed "ValueError: Unrecognized data type: x=[10.0]". After changing the last line (print model predict) to this it worked: print(model.predict(tf.convert_to_tensor([10.0])))

    • @hamsterman1571
      @hamsterman1571 4 місяці тому +1

      giving xs and ys are array but as an input u are using a list '10.0' so its error, u can also try : predict(np.array([10.0])))

  • @r.a.9802
    @r.a.9802 2 роки тому +1

    Gracias, thank you, danke, merci

  • @simonwhitehead2857
    @simonwhitehead2857 5 років тому

    Ok, you show some code that builds and trains the model before making a prediction. I found that on subsequent runs the accuracy increases, I realize that for some applications this can result in 'overfitting'. So once I am happy with the level of accuracy ,how can I apply the trained model without running the training (how/where is the model saved?)? Really love this course my head is working overtime in thinking of ways I want to try and apply it!

  • @RandomGuy-hi2jm
    @RandomGuy-hi2jm 5 років тому +1

    Plz be regular and consistent. 😊

    • @Stwinky
      @Stwinky 5 років тому

      Looks like a job for normalization 😉

    • @laurencemoroney655
      @laurencemoroney655 5 років тому +1

      Trying!

    • @RandomGuy-hi2jm
      @RandomGuy-hi2jm 5 років тому

      @@laurencemoroney655 thanks.. Loved ur Videos too knowledgable

  • @dodraugen2k
    @dodraugen2k 5 років тому

    I've set me UA-cam-language to Chinese (as I'm studying the language) and noticed that I can no longer see the google-link to the code in this video's description field... That's kinda annoying (solved by opening the video in a private window and getting the link for the English description). Why leaving the link out of the Chinese language description? UA-cam's already blocked in China..

    • @LaurenceMoroney
      @LaurenceMoroney 5 років тому

      I don't get that, when I set the language to Chinese I still see the same description. Hmmm...

    • @normi6046
      @normi6046 4 роки тому

      我也同样看不到连接的代码段,我选择自己输入代码了

  • @krishnachauhan2850
    @krishnachauhan2850 4 роки тому

    Please make a series on audio data loading n analysis using tensorflow