Maxwell Boltzmann Statistics

Поділитися
Вставка
  • Опубліковано 18 лис 2024

КОМЕНТАРІ • 76

  • @MrFreudianslips
    @MrFreudianslips 9 років тому +36

    beautifully explained! Some of the professors at IIT are simply outstanding teachers.

    • @alis5893
      @alis5893 4 роки тому

      except that he is explaining the Omega absolutely wrong

    • @jacobvandijk6525
      @jacobvandijk6525 4 роки тому

      @@alis5893 So where is your explanation???

    • @ishwartanwar8983
      @ishwartanwar8983 4 роки тому

      @@alis5893 how? Here Omega is the no. Of ways of particles in a microstate and not not accessible state.

    • @alis5893
      @alis5893 4 роки тому

      @@ishwartanwar8983 ok . I think I got confused over the symbols

  • @sachinnatesh1042
    @sachinnatesh1042 9 років тому +32

    Multiplicity (omega) is not a statement about a particular microstate, but one concerning the number of microstates belonging to a particular macrostate. For example, if you flip a coin three times, the outcome 'HHT' is a microstate corresponding to the macrostate '2 Heads'. The multiplicity of the '2 heads' macrostate is 3 as we can get 2 heads by {HHT, HTH, THH}.

    • @paulreiser816
      @paulreiser816 8 років тому +20

      +Sachin Natesh - I agree - He keeps saying "microstate" when he means "macrostate". A macrostate is what you actually can see - variations in temperature, density, pressure, etc. but not what each particle is doing. When you think about what each particle is doing, that's a microstate, and there can be many microstates which give you the same macrostate. There is no "most probable microstate". All microstates are equally likely. There is a "most probable macrostate" - the equilibrium macrostate. It turns out that almost all the microstates give you the equilibrium macrostate. The system is jumping around from microstate to microstate, but practically every jump it makes is to another equilibrium microstate and when you actually make a macro-measurement, it always looks the same.

    • @utkarshaggarwal1631
      @utkarshaggarwal1631 4 роки тому

      thanks for clarifying

    • @utkarshaggarwal1631
      @utkarshaggarwal1631 4 роки тому

      @@paulreiser816 awesome explanation man

    • @utkarshaggarwal1631
      @utkarshaggarwal1631 4 роки тому

      @@anonymous-hz1mf thanks for further explanation

    • @preranadash9640
      @preranadash9640 3 роки тому

      @@anonymous-hz1mf Thanks brother:)

  • @prashantdagale9542
    @prashantdagale9542 4 роки тому +5

    Beautifully explained. Cleared all the doubts I had ! Always a fan of NPTEL.

  • @wallacechan6128
    @wallacechan6128 8 років тому +5

    Dr. Haridoss, thank you very much for your teaching. I spent hours in Max Born's version re Maxwell Boltzmann distribution, but your explanation is way clearer and easy to understand. Absolutely brilliant.

  • @Meow_yj
    @Meow_yj 3 роки тому +7

    This is the best lecture I've come accross so far!

  • @LibertyAzad
    @LibertyAzad 6 років тому +3

    Haven't seen any of his other videos, but after this one, I think I should. VERY helpful. Thank you!

  • @paulg444
    @paulg444 2 роки тому +1

    I think what he wanted to say was that Omega is the number of ways (number of micro-states) of obtaining a given macro-state. And that macrostate that encompasses the greatest number of microstates is the maximizer of Omega.

  • @dnsahoo1234
    @dnsahoo1234 8 років тому +4

    a best source for better explanation of this theory...

  • @germainguerin3063
    @germainguerin3063 3 роки тому +6

    What an outstanding professor/teacher!!!! I'm always looking for how and why they come at these famous equations and this video is wonderfuly explained. Only one note, at 48:50 how did they find that beta = 1/kBT?

    • @jacobvandijk6525
      @jacobvandijk6525 3 роки тому +2

      Beta is part of exp(-beta.epsilon) with epsilon being some level of energy; like is shown here: 48:36. Because the term in parentheses must be dimensionless beta must have a unit of energy. The product kB . T (from the ideal gas law) gives you that unit.

  • @goutamm7409
    @goutamm7409 8 років тому +2

    Understood much better and easily sir. Thankyou alot.

  • @SocioMahi
    @SocioMahi 7 років тому +3

    Thank you Sir ,can you providea video about Nernst heat theorem & third law of thermodynamic ..? It will may help me a lot .

  • @KingRobbStark
    @KingRobbStark 11 років тому +2

    This is very good. I just wished you had showed some examples.

  • @rakhitiwari5169
    @rakhitiwari5169 2 роки тому

    if the quality of video will be increased it should be more great. very nice video lecture sir. thank you so much

  • @abcdef2069
    @abcdef2069 7 років тому +3

    can you tell me why boltzman used n!/n1!n2!..... whose particles are partially indistinguishable in group by group, while n^k perfectly treats the particles distinguishable.

  • @muhammadusmanmuhammad6786
    @muhammadusmanmuhammad6786 3 роки тому

    Watching from Nigeria, very interested lecture, thank you sir

  • @abhishekmodi3671
    @abhishekmodi3671 6 років тому

    Very good explanation of Maxwell boltzmann statistics

  • @jacobvandijk6525
    @jacobvandijk6525 4 роки тому

    @ 11:36 The Boltzmann-distribution is based on classical physics, in which energy is continuous (= no discrete energylevels). Here a fixed number of energylevels is only convenient from a mathemical perspective. @ 50:06 This is NOT the Maxwell-Boltzmann distribution. It is the Boltzmann-distribution!

  • @Mohit-ir5xo
    @Mohit-ir5xo 2 роки тому

    Start loving science again

  • @vikaskadian461
    @vikaskadian461 3 роки тому

    Amazing amazing....thanks a lot Sir 🙏🙏🙏

  • @aritrachatterjee7006
    @aritrachatterjee7006 8 років тому +3

    Bravo, sir!

  • @goutamm7409
    @goutamm7409 8 років тому +6

    But, how did you take "beta" as 1/KbT

  • @neerajchauhan00000
    @neerajchauhan00000 6 років тому +4

    Sir plz tell me where can I find the video lectures of optics for b.sc

    • @arulraj3422
      @arulraj3422 4 роки тому

      Optoelectronics nptel by IIT Delhi prof.Dr. shony

  • @anthonywilliamojoniko591
    @anthonywilliamojoniko591 2 роки тому

    Thanks for the explanation

  • @wanitraders
    @wanitraders 11 років тому +1

    Helped Me Lot To Clear My Concept Thanx Great Work :)

  • @jullyms
    @jullyms 8 років тому +4

    Thank's for your explanation :))

  • @santoshreddypulicanti847
    @santoshreddypulicanti847 Рік тому

    The best professor!

  • @lakshmanpaluvai6967
    @lakshmanpaluvai6967 7 років тому +1

    plz explain interpretation of partition function: translation,rotational,vibrational and electronic partition functions.

    • @NitinSharma-te8cy
      @NitinSharma-te8cy 7 років тому

      BSc physics course.. Ri8??.. I want the same things... Lol... Have u found all these??

  • @alis5893
    @alis5893 4 роки тому +2

    YOU NEED TO CORRECT YOUR EXPLANATION OF OMEGA... Students will get confused. CORRECT THIS

  • @prasannathapa1024
    @prasannathapa1024 6 років тому +1

    Best thing in internet!

  • @mkhanstar9552
    @mkhanstar9552 3 роки тому

    Sir what is mean by alpha nd beta ??
    Shotly

  • @panosr96
    @panosr96 5 років тому

    κοιτα θα ειμαι ειλικρινης , πολυ βοηθητικα ολα τα βιντεο σας και μπραβο σας
    αλλαααααα δυστηχως η προφορα των αγγλικων σας ειναι ανυποφορα κουραστικη ποποοοοοοο

  • @asifch9901
    @asifch9901 7 років тому +1

    outstanding sir

  • @videoviewerviewer4107
    @videoviewerviewer4107 6 років тому +1

    Thank You Sir

  • @zxvats
    @zxvats 6 років тому

    Link for the complete lecture series plzzz

  • @utkarshramachandraep0995
    @utkarshramachandraep0995 4 роки тому

    what an amazing lecture ... really well explained

  • @abhishekshirkar5794
    @abhishekshirkar5794 9 років тому +1

    how can we take delta(ni) common from 1st expression ?

    • @prasannathapa1024
      @prasannathapa1024 6 років тому

      delta(ni) is like the dx part of the differentiation,
      f'(x) = (something)
      so
      dy/dx = (something)
      dy = dx(something)
      here dy = delta(Omega)
      dx = delta(ni)
      it's not delta actually, its del

  • @rajkamalswain2326
    @rajkamalswain2326 5 років тому

    Is it for the expression for velocities for ideal gas ????

    • @physicsmathsworld2033
      @physicsmathsworld2033 3 роки тому

      Noo.....we can derive "Maxwell velocity distribution" using this "Maxwell boltzmann statistics "

  • @ishwartanwar8983
    @ishwartanwar8983 4 роки тому

    Wonderful ❣️

  • @Urbandesi231
    @Urbandesi231 6 років тому

    Very good teacher

  • @megavathpremkumar7456
    @megavathpremkumar7456 5 років тому

    U give us more videos sir

  • @mathman2170
    @mathman2170 2 роки тому

    Thanks.

  • @megavathpremkumar7456
    @megavathpremkumar7456 5 років тому

    Too good excellent

  • @aroojfatima4094
    @aroojfatima4094 6 років тому

    Absolutely brilliant👍🏻👍🏻

  • @ashutoshkumar1386
    @ashutoshkumar1386 2 роки тому

    What about degeneracy

    • @jacobvandijk6525
      @jacobvandijk6525 Рік тому

      When the state of a system has more than one energy-value, this state is called degenerate.

  • @elamvaluthis7268
    @elamvaluthis7268 3 роки тому

    Nice.

  • @saifrahaman8974
    @saifrahaman8974 7 років тому

    Thanks sir

  • @sharkmaster1807
    @sharkmaster1807 9 років тому +3

    are you wearing slippers ? do you have a lost brother ?

  • @rajeshmodi356
    @rajeshmodi356 6 років тому

    Sir please Hindi me lectures dijiye..

  • @soot5676
    @soot5676 6 років тому

    not bad mmm

  • @anithavasisht5207
    @anithavasisht5207 8 років тому +1

    sound quality is very poor

  • @anithavasisht5207
    @anithavasisht5207 8 років тому +1

    sound quality is very poor.. cudnt understand anything

  • @anithavasisht5207
    @anithavasisht5207 8 років тому +1

    sound quality is very poor.. cudnt understand anything

    • @chethans5908
      @chethans5908 Рік тому

      So, you better watch other lecture series!