so yeah. essentially multiplying by x^2 at either step (right at the end) or at the beginning is completely legitimate. just gotta note that x cannot be zero. even if it was just an equation: say we had the equation... (x+1)(x-1)^2/x = 0 and hypothetically we decided to multiply both sides by x^2 (obviously not the method you should use for this equation) x(x+1)(x-1)^2 = 0 then our solutions would apparently be 0,-1,1 but x can't be zero. so fake solution. even if we had a false equation: 2 = 3 and we decided to multiply both sides by 0 apparently 2 = 3 => 2(0) = 3(0) => 0 = 0 so with implications, it doesn't necessarily mean 2 = 3 is true (it's obviously false). essentially what im trying to say here is most people are kind of wary that dividing by zero is a no go, but even multiplying both sides by 0 of an equations or inequation is still a no-no. therefore if u need to multiply by a variable on both sides (or divide) and that variable can be zero, that case needs to be checked separately, inequality or equality. ------ indeed though as said earlier in the video, "why can't we multiply by just x?" and through my limited chinese i could gauge lihan laoshi explain that you can, u just have to be careful with the 2 cases whether x > 0 so inequality sign stays the same throughout and need to include x>0 \land x \in [some interval] together and similarly for x < 0, flip sign and combine the statement x < 0 and the other statement you conclude from this case (so it's too much of a pain to deal with cases, dont multiply by x alone) I can see initially he was worried about the denominator disappearing when multiplying by x^2 (rightfully so). x^2 can be zero at x = 0 (check separately). My non-chinese brain couldn't quite understand how he got from the second last line to the last line without multiplying by x^2, what was his reasoning? seems like TW method is different in reasoning between those lines like and 'iff' situation as he showed the 'iff' symbol right at the end.
i can kinda see how he went from second last line to last line. a/b > 0 iff ab > 0 in either case either both a, b > 0 or both a, b < 0, hence the iff. so no need to reason by multiplying by b^2 on both sides. but essentially, this should show why cheng yi b^2 is legit.
@@httc805155 yeah. although somewhat equivalent. you can multiply by x^2 if either you can assert x can never be 0 or if you have checked or will check whether x = 0 is a soln. 如果你知道那個 x 不等於零或者你會check "x" 可能等不等於零 or 已經check 了 or 馬上check了, 可以乘x^2 In context(就是equivalent a/b 大小於 0 iff ab 大小於 0) 2 reasonings 1. 因為b 已經不等於零可以乘以b平方 或 2. “single/double positive/negative reasoning” quotient and product have same sign by nature if definable.
第二部: 小學面積 ua-cam.com/video/XyS7c7qMmsQ/v-deo.htmlsi=ZbEHmORUkZnTv6gQ
有種知識滑過大腦,卻不留一絲痕跡感覺
實際上台灣很多老師會教學生引導討論增根問題的
但是年紀越大的越不喜歡這樣是因為:
老師:「那如果換一個方式,比如說✖️X^2?」
學生:「蛤?我幹嘛學這麼多?浪費時間,我只要速解法。」
會走上數學老師這樣條路的,沒有一個老師喜歡單純的速解法的,大家都喜歡討論「更完整更有趣的方法」。
是學生「大部分喜歡速解法」,跟他們「講原理」希望他們「討論」,大部分的學生馬上睡給你看。
是我就會在第六行算式直接只看(x+1)/x,(x-1)²恆正,可以直接被忽略,就跳到x(x+1)>0就可以了,只是在寫最終解的部分要注意x不能等於1就好
但是x=(-0.9)的時候就不是正數了🤔
@@roadboy1234 x(x+1)>0, x>0, x
我自己也是會直接銷掉x-1那項
相當的劉力維
@@---ry5up 劉力維?
在不是well-define的情況,兩邊都同乘以x^2,不僅可以避免變號的問題,也可以消除奇點的問題,太強大了
因為不等式沒有等號,以及奇點在不等式中會分割不等式的解集,因此我們可以在該解集中的奇點做極限趨近,但是!如果有等號,就要不能先在不等號兩邊有變數的情況下同乘或同除,除非有特別標記奇點不存在於不等式解集中
強大?這國中老師有講吧…
因為原式X不可為零 所以沒有X平方探討問題 先乘後乘都可以
把x^(-n)換成x^n這個過程其實做的就是乘以x^2n
因此直接把分母的x搬到分子與乘x^2的做法完全是等價的
但影片中沒有提到的細節是不論用哪個做法都要先補上x不等於0的條件才行
影片的例子是大於所以不會遇到等於零的問題
若題目是大於等於時只要確保補上原式不等於0的條件兩種做法都可以做出正確答案
題目原式X可以放在分母 定義域本來就沒有0 trivial不需要特別討論
@@derekhcj3為了嚴謹還是需要的,反正在高中不標註是會扣分的,因為會被視為“沒注意到”而直接套用
@@charlie-e6t-d1g 證明過程多的直接寫it’s trivial 直觀的東西完全不需要解釋 不會有人不知道X 於分母的定義域沒有0 要嘛是你不懂 要嘛是你高中老師不懂 但高中數學老師都是數學系畢業的 所以…很明顯了
@@derekhcj3 沒必要這麼有攻擊性,這就是大考改試卷的規則,老師懂不代表學生有注意到,所以會要求學生標記代表他有注意到這件事,這很合理,你沒標記就是會被扣分,因為他認為你不嚴謹
@@derekhcj3 而且念數學系的都知道,證明時不寫明白定義域就是欠扣分的,不要跟我辯,我就是數學系的
[(x+1)(x-1)^2]/x>0,接著變成x(x+1)(x-1)^2>0這步。雖然是用另一個概念去推導出來,但實際上和兩邊同乘以x^2是一樣的。是不是其實和網友的建議殊途同歸,早乘x^2和晚乘x^2的差別而已?
這邊我也是這樣想的,曹老師提出觀眾的做法後我的想法也是:不就是把同乘x^2這個步驟往前放而已嗎🤔
@@kuc910 兩個概念是不一樣的,注意李老師用的是"等價"這個詞而非說兩個式子為前後的推倒關係。這邊的兩個式子"等價"的意思是說這兩個式子在整個實數上除了不可定義的地方上都等號,因此可以用x(x+1)(x-1)^2>0來解此題。
@@howard91dc oh不不不,反而是你搞錯了我的意思,我指的不是說李老師的做法是把式子乘x^2,而是指說當李老師替換成另一個等價式子時,順帶達成了兩邊同乘x^2,結果就跟曹老師觀眾給出的解法走成一樣的路,我並不是講說李老師的解法是把同乘這個步驟往後放,而是講說:式子替換時,走到了和觀眾給出的方法的同一條路
也可能是我的第一則留言沒有明確表達吧,讓你誤會了😅
同問
x^2可以啊 就想成這式子整理再一起乘以x^2 那畫圖在0的地方就多2個重根 前後正負根本沒差 當然如果式子沒有x那就會造成x=0有解 也就是很多人喜歡證明1=2的增根
我 台大物理系畢業 這個李翰數學老師 比網上我看過的高中數學老師程度好一個等級以上 我幾乎全部看過
從哪裡可以看?
台大物理系連句子都打不好?
ㄜ真的 李翔一卡住就開始問有沒有解法
我比較好奇李翔有哪裡不好?
句子是哪裡打不好?沒有造成歧義或誤解就是好句子。台大物理系又怎麼了嗎?
7:35 等价的这步转换,其实不就是不等式左右同时乘x^2吗?
1 增根的問題;
但是,同餘理論和餘式定理、因式定理的應用,
使用【方程式的倍式】,應該沒有問題?
從函數的值域來看?
我是用區間去想,因為一旦x
題目一開始就以X為分母,本來X就不能等於0,所以兩邊乘X^2沒問題的啦,不會有增根,就算是有等號也不會影響結果
討論正負問題 不用擔心增根😊
老師可以講解一下畢導說的強算術數學的完備性嗎?
聽了有點霧傻傻的…
還有關於諾頓穹頂r=0時為何不可洛必達
求求了
r=0;請問是
圓柱面的微積分- 線積分嗎
?
分式不等式怕遇到的是中間不等關係中有等號出現(>=或
必須先確定x≠0才能兩邊乘上x²,或是你要調整x的定義域,否則不等式不成立
最後除以x變成乘以x說是等價,但是這個等價不就是兩邊同乘以x^2嗎?所以跟老師說題目一開始乘以x^2相比是一樣的,只是先乘後乘的問題,所以根本沒差。有差的是不等式有沒有等號,會影響x=0這個地方,但是其實後面的等價說法一樣會影響,兩邊同乘以x^2就得設定x不等於0。所以我覺得其實先乘以x^2跟後面做題老師說的等價其實根本是同一件事情。
同乘分母平方可能的問題是
最後要排除分母等於0的情況
不然其他情況都可以
老師的說法也有一點問題的樣子
如果這題等號成立
圖形上看X=0也應該是解
但這題X不可能是0
我自己解的時候
我會用同乘分母平方的做法
最後寫答案會用連立寫出來
不等式成立且分母不等於0取交集
或是
用曹老師的做法
解等於0然後帶點判斷區間的正負
我們一般算式推導都是“單向”的,因此會寫單箭頭,通常解出答案後是需要代入原題目檢驗,尤其是代數部分的題目
(1)假設x>1 。。。。得x ^2 >1(2) 假設1 >x>0。。。得x^2 < 1 (3) 假設0>x 。。。 得x^2 >1。。。。結論得數線上有三區,滿足。。
有一區,不滿足。即0>×>-1
啊!我看懂了!台湾老师:快速解出「正确答案」,美国老师:引导思考,发现更多的解法。
台灣這邊就是:(老師一進門) 同學我們沒有時間了要趕進度 (每一天)
@@Ayuan0920 你们的学校比我们还卷
兩個老師都只是個人 不代表總體狀況
另外 快速解出正確答案也不一定不好
能學得來的學生就會自己去想為什麼可以這樣解 不這樣解會出什麼問題
(所以台灣有個很普遍的認知 看老師做題覺得懂了 跟自己做題做得出來完全是兩碼子事)
學不來的....反正大概率也不會學得比美國公立學校少了
要確定 x 不能等於 0 才能乘 x^2
例子
x - 1 < 0 顯然x 是可以等於0
但如強行乘 x ^ 2 會做成
x^2(x-1) < 0
x = 0 的可能性便被消滅
老師,想問有沒有一個直接的公式求W(一個常數)的近似值?
很ln(x)很像,都很可惜沒有。但是有power series.
可是... 第一種算法
從 (x+1) (x-1)^(2) /x > 0
變成 (x+1) (x-1)^(2) x > 0
這個過程不就是乘 x^2 嗎?
意義不太一樣
好像是因為可能x=0
r=0;請問
圓柱面的微積分- 線積分?
看到两边有x-1, 真的能忍住不讨论一下把它先消除掉吗,直觉上这个消除的冲动很强啊
到了 x > 1/x 或者 x < 1/x 的 第一反应又是图像了,因为直觉上 如果又讨论正负 那会太多分支
乘上 (分母)x^2是个好想法,真没想过,学到了!!!
你要確保x-1不等於0才可以消掉,通常是要討論的
要分成(x-1)等不等於0,等於0不存在解,不等於0又要討論x>1和x
在同除未知數的時候要先確保他不會是0
在不等式還要判斷正負號
所以未知數一般不能亂除(乘的話也一樣)
@@user-ns5pv3wf2g x不等於0也不等於1...
這是明顯看得出來的
我都懶得寫...
槓!! 每次都扣我分
哲文教過ㄟ
假設題目式成立,X 不等於 0,不等式兩邊同乘以 X^2 ,在不等式上面就不討論左右相等的情況發生,對嗎?
so yeah. essentially multiplying by x^2 at either step (right at the end) or at the beginning is completely legitimate.
just gotta note that x cannot be zero.
even if it was just an equation:
say we had the equation... (x+1)(x-1)^2/x = 0
and hypothetically we decided to multiply both sides by x^2 (obviously not the method you should use for this equation)
x(x+1)(x-1)^2 = 0
then our solutions would apparently be 0,-1,1
but x can't be zero. so fake solution.
even if we had a false equation: 2 = 3
and we decided to multiply both sides by 0
apparently 2 = 3 => 2(0) = 3(0) => 0 = 0
so with implications, it doesn't necessarily mean 2 = 3 is true (it's obviously false).
essentially what im trying to say here is most people are kind of wary that dividing by zero is a no go, but even multiplying both sides by 0 of an equations or inequation is still a no-no.
therefore if u need to multiply by a variable on both sides (or divide) and that variable can be zero, that case needs to be checked separately, inequality or equality.
------
indeed though as said earlier in the video, "why can't we multiply by just x?" and through my limited chinese i could gauge lihan laoshi explain that you can, u just have to be careful with the 2 cases whether x > 0 so inequality sign stays the same throughout and need to include x>0 \land x \in [some interval] together and similarly for x < 0, flip sign and combine the statement x < 0 and the other statement you conclude from this case (so it's too much of a pain to deal with cases, dont multiply by x alone)
I can see initially he was worried about the denominator disappearing when multiplying by x^2 (rightfully so). x^2 can be zero at x = 0 (check separately).
My non-chinese brain couldn't quite understand how he got from the second last line to the last line without multiplying by x^2, what was his reasoning? seems like TW method is different in reasoning between those lines like and 'iff' situation as he showed the 'iff' symbol right at the end.
i can kinda see how he went from second last line to last line.
a/b > 0 iff ab > 0
in either case either both a, b > 0
or both a, b < 0, hence the iff.
so no need to reason by multiplying by b^2 on both sides.
but essentially, this should show why cheng yi b^2 is legit.
Yes that’s the correct reason. Those two expressions behave the same in terms of their sign changes, so he used the bottom one to graph.
Thank your for explanation ! Even most of the Mandarin speaking audience misunderstands the meaning of a/b to a•b is multiplying by b^2
@@httc805155 yeah. although somewhat equivalent.
you can multiply by x^2 if either you can assert x can never be 0 or if you have checked or will check whether x = 0 is a soln.
如果你知道那個 x 不等於零或者你會check "x" 可能等不等於零 or 已經check 了 or 馬上check了, 可以乘x^2
In context(就是equivalent a/b 大小於 0 iff ab 大小於 0)
2 reasonings
1. 因為b 已經不等於零可以乘以b平方
或
2. “single/double positive/negative reasoning” quotient and product have same sign by nature if definable.
(x+1)(x-1)²/x > 0
x(x+1)(x-1)² > 0 不就是兩邊乘x²嗎
乘以x^2感覺很像AI會寫出來的過程
乘以X^2时候加一个附加条件即X不等于0,解的时候加上这个限制就可以了。再把(X-1)^2拿掉,最后就变成X(X+1)>0 且X不等于0,X不等于1
老師長得有點像我中央研究所的同學。
直接給他看題目就好一直NG比較好嗎
奇數穿 偶數什麼?
第三步怪怪的 , 通分後怎還有1/X ,1/X怎來的
請問一下∫_0^1▒e^(e^x )
x(x-1)>(x-1)/x, x≠0
=> x³(x-1)>x(x-1), x≠0
=> x(x-1)(x²-1)>0, x≠0
=> x(x+1)(x-1)²>0, x≠0
=> x(x+1)>0, x≠0, 1
=> -1
李翰老師解建中資優題 ua-cam.com/video/W25ekVQJYiw/v-deo.htmlsi=i5d1dE1ikQfGLJnl
if 1x>1/x==>1
同乘x頭就跟家教學生八下去