Symmetric Groups Part 1

Поділитися
Вставка
  • Опубліковано 21 гру 2024

КОМЕНТАРІ • 25

  • @antongeorgiev1704
    @antongeorgiev1704 5 років тому +18

    Every subject should have an introductory course structured like this, instead of just pouring all the generalized concepts on the newbies... People need this and are searching for this, so it's a great work that you are doing, THANK YOU!

  • @michaeljagdharry
    @michaeljagdharry 9 років тому +46

    review ends at 9:30

    • @WayneKimRecords
      @WayneKimRecords 8 років тому +3

      wow thanks a lot
      I was just thinking "when does this finish lol"

    • @xoppa09
      @xoppa09 7 років тому +2

      i enjoyed the review. did you see video 1,2,3?

  • @gutzimmumdo4910
    @gutzimmumdo4910 2 роки тому +1

    one of the most impresive things i cant really understand is how you have such a good handwriting, like wtf.👍👏

  • @Gismho
    @Gismho 5 років тому +3

    Yet another EXCELLENT exposition of Symmetric Groups. ..... Best on the "net". I'm going thru all your videos as part of my revision for exam on Group Theory in February 2020, so really grateful for all your instruction.

  • @cristopheririas1509
    @cristopheririas1509 5 років тому +1

    2019 AND ME, just whatching these great viideos!

  • @StormCrowAlpha
    @StormCrowAlpha 6 років тому +1

    You should make a playlist for analysis

  • @andreypetrov1327
    @andreypetrov1327 Рік тому

    9:36 - new topic starts

  • @beback_
    @beback_ 7 років тому +9

    How can you know both Math AND Biology? That's unnatural :D
    Do you have a Patreon? I'd like to donate...

  • @Yuqiandygao
    @Yuqiandygao 9 років тому +1

    Hi, I really enjoy your videos and they have been very helpful for me so far. Just wondering if you have any videos on the topic symmetric and alternating groups? So with stuff like the composition of disjoint cycle?

  • @ANDROIDPOSTMORTEM
    @ANDROIDPOSTMORTEM 2 роки тому

    Beautiful sir ❤... Can you please tell one thing, that why is this group called symmetric???

  • @karinaiusupova253
    @karinaiusupova253 3 роки тому

    i like it Elliot

  • @GodlessPhilosopher
    @GodlessPhilosopher 5 років тому

    Why must the identity element commute?

    • @Sandwichch3
      @Sandwichch3 5 років тому +2

      that's an axiom of Group

    • @telnobynoyator_6183
      @telnobynoyator_6183 3 роки тому

      Suppose you have an i in your group and for any x in your group, x * i = x
      for any a and b in your group
      a * (i* b) = (a * i) * b because of associativity
      a * (i * b) = a * b because of our previous assumption about i
      Now you can see that putting i before be gives pretty much the same result as if nothing was put there when composing with other elements. We say that i * b = b to be able to directly simplify this kind of thing.
      (those are just my thoughts, I'm no group expert)

  • @ankanbiswas2854
    @ankanbiswas2854 8 років тому +1

    So if I am getting this right... The additive composition defined on decimal number system of S4={0,1,2,3} is not a group since when we do 2+3=5 we are losing the closure property.
    But if we take the number system of base 4.. we get ourselves a Group. yes?

    • @ravirajh6658
      @ravirajh6658 7 років тому +1

      but it's not a group, just a set

    • @unknownknown347
      @unknownknown347 5 років тому

      Group operations modulo n. This works with all the regular number systems. Example:- consider Z as the set of all integers. Let( Z,*) be a group(It is, check!). Then Z(subscript5) is {0,1,2,3,4} closed under multiplication modulo 5

  • @360wheelz5
    @360wheelz5 4 роки тому +3

    Defines natural numbers as number of cows. 1 cow, 2 cows, 3 cows.

  • @devdut3029
    @devdut3029 2 роки тому

    Ook....?

  • @louismallet6724
    @louismallet6724 6 років тому

    You forgot zero in the natural numbers

    • @MichaelGoldenberg
      @MichaelGoldenberg 6 років тому +5

      Zero is not considered a natural/counting number historically as it was invented much later. Some authors do include it as a natural number, but it’s not universally so.

    • @navjotsingh2251
      @navjotsingh2251 5 років тому +2

      Michael Goldenberg thanks for pointing this out.