Overview Artificial Intelligence Course | Stanford CS221: Learn AI (Autumn 2019)

Поділитися
Вставка
  • Опубліковано 28 січ 2025

КОМЕНТАРІ • 63

  • @pandukawb
    @pandukawb 2 роки тому +116

    It is amazing that we are getting this knowledge for free!

    • @Jonathan-ru9zl
      @Jonathan-ru9zl 5 місяців тому

      It'll be more amazing when we'll have our private ai teacher in the near future

  • @jeremycornish-ford2435
    @jeremycornish-ford2435 2 роки тому +27

    "Do not forsake wisdom, and she will protect you; love her, and she will watch over you. Wisdom is supreme; therefore get wisdom. Though it cost all you have, get understanding." - Proverbs 4:6-7. Thank you Stanford.

  • @trailersforme
    @trailersforme 2 місяці тому +3

    Participating in Stanford classes for free! Thank you so much.

  • @GoroniG
    @GoroniG Рік тому +10

    seeing this in 2023 is quite intresting. yay baby

  • @BeeAnnoying
    @BeeAnnoying Рік тому +13

    I finished first class today!

  • @blob4492
    @blob4492 7 місяців тому +5

    I'm trying to get into a university for ai engineering and this course is just what I needed!

    • @oanhhoang7047
      @oanhhoang7047 6 місяців тому +1

      Hey I haven't watch this course yet, does it required prior knowledge of CS or coding?

    • @blob4492
      @blob4492 6 місяців тому

      ​@@oanhhoang7047 its good (and recommended) to know some coding, but you can get through without having prior cs knowledge

    • @AmazingGirl896
      @AmazingGirl896 6 місяців тому +1

      ​@@oanhhoang7047not really

  • @aerodynamico6427
    @aerodynamico6427 2 роки тому +28

    The real course begins at 4:52, with the origins of AI.

  • @swavekbu4959
    @swavekbu4959 Рік тому +8

    Excellent teacher! Enjoyable to listen to.

    • @kannonpayne2614
      @kannonpayne2614 9 місяців тому

      Ikr I’d be a Harvard graduate if all my teachers taught like him.

  • @miguelcalvache706
    @miguelcalvache706 2 роки тому +33

    Thanks a lot indeed for sharing all this knowledge!

  • @aimennadeem7243
    @aimennadeem7243 2 роки тому +23

    Lecture begins at 2:45

  • @WolfRex4
    @WolfRex4 2 роки тому +9

    This is amazing thank you!!! So refreshing and so unique.

  • @do-awr1068
    @do-awr1068 2 роки тому +14

    its actually hard for a beginner but its amazing

    • @alexchen1300
      @alexchen1300 Рік тому +2

      agreed man, took me a few hours to get these codes straight

  • @tlzg
    @tlzg 11 місяців тому +1

    Wow, this is gold!!!❤

  • @JonB-tv8vs
    @JonB-tv8vs Рік тому +2

    Interesting. Lost of concern about bias, but then the root vulnerability of bias is found in modeling. If you want a specific outcome (a bias on equity versus equality, for example), model it and everything will be based on that. GIGO.

  • @almirtavares1703
    @almirtavares1703 2 місяці тому

    tks for share... I loved theses class and the didatic teachers

  • @rafael_Reis_rv
    @rafael_Reis_rv Рік тому +1

    Rewarding Content!!

  • @calvin_713
    @calvin_713 Рік тому +9

    24:48 I thought the dead silence after professors giving a question won't happen in stanford courses 🤣

  • @Jonathan-ru9zl
    @Jonathan-ru9zl 5 місяців тому

    Excellent lecturer

  • @lindacarlen6250
    @lindacarlen6250 11 місяців тому +1

    Thank you!

  • @connerwhite5351
    @connerwhite5351 Рік тому +4

    Glad this is difficult to learn. Means there will be few that get into it. Which means more 💲💵. At least for a decent period of time

  • @mohhammadscharifie5059
    @mohhammadscharifie5059 Місяць тому

    thank u for your excellent course, but how can I reach the home works, I want to do them myself for practicing and better learning

  • @mehdibahmani3791
    @mehdibahmani3791 2 роки тому +2

    dorsa ❤

  • @phosphoricx
    @phosphoricx 9 місяців тому

    Writing the code for a demo live in class is bawler.

  • @dyllanndaniel4118
    @dyllanndaniel4118 Рік тому

    Woah! This is so interesting

  • @PriyanshuJha-t7b
    @PriyanshuJha-t7b Рік тому

    Can't we just find the max lenght of the two strings,in this case the max length will be of string 2 which is "The Cats" then use the LCS Algo using the DP(recursion) which returns the longest common subsequence and then substract it from the max length of the string. Can we approach this way someone please look into this!

    • @PriyanshuJha-t7b
      @PriyanshuJha-t7b Рік тому

      I think doing this by LCS would be easy,First we find the max length of the two strings:
      int max(str1,str2){
      s1=sizeof(str1);
      s2=sizeof(str2);
      if(s1>s2){
      max=s1;
      }
      else{
      max=s2;
      }
      return(max);
      }
      int LCS(m,n){
      if(m==0)
      return(n);
      if(n==0)
      return(m);
      else{
      if(s[m]==t[n])
      return(1+LCS(m-1,n-1));
      else
      a=min(LCS(m-1,n),LCS(m,n-1));
      return(a);
      }
      }
      Finally return(max-LCS(m,n))
      This way we can find out the minimum edit distance between the two strings.
      NOTE -> We have not consirdered the space while calculating the max!
      Please do correct if I am wrong anyone??

  • @adhamadel8937
    @adhamadel8937 2 роки тому +1

    Amazing

  • @lindailiana9858
    @lindailiana9858 7 місяців тому

    What are the two views?

  • @vamsikrishna_1289
    @vamsikrishna_1289 Рік тому

    In which platform does the code get executed

  • @alpeaceandlove
    @alpeaceandlove Рік тому

    yo thanks man for ya knowledge

  • @monkmode9138
    @monkmode9138 Рік тому +3

    I didn't understand how the cache works. Can someone explain please?
    1:14:47

    • @monkmode9138
      @monkmode9138 Рік тому

      We use cache after we do all computing ( after "result = min(subCost, delCost, insCost)" ) so how does it benefit to us?

    • @JessicaAnhDao
      @JessicaAnhDao Рік тому +3

      You check the cache FIRST before running all the computation "if (m,n) in cache => return cache(m,n)" lines at the top before everything else. So basically if the result is already in the cache then there is no need to run 3 computations again, just return the result

  • @UsamaKhan-oj2nn
    @UsamaKhan-oj2nn 9 місяців тому

    Sir where I get school emails for piazza plate form

  • @mohmedosamahegab3191
    @mohmedosamahegab3191 7 місяців тому

    How I can get these lecturers 😢

  • @x10creeper52
    @x10creeper52 5 місяців тому

    My timestamp 01:06:20

  • @tylarrj
    @tylarrj Рік тому +2

    30:00

  • @ExploreEight
    @ExploreEight Рік тому

    little difficult

  • @dakshinamurthy8066
    @dakshinamurthy8066 Рік тому +1

    Its hard to understand the lecture, any suggestions

  • @ameendababat9886
    @ameendababat9886 Рік тому

    23:32

  • @PhilippeJosephEncinas
    @PhilippeJosephEncinas 2 дні тому

    18:30 Kinda cool how we can recreate intelligence, it's called making babies.

  • @Raunaksingh.2
    @Raunaksingh.2 21 день тому

    Hey anyone in 2025👇,I think I'm too late to learn AI and Ml to get my dream Job 😢.

  • @jameshopkins3541
    @jameshopkins3541 Рік тому

    UFF INSOPORTABLE PALABRERIA

  • @jameshopkins3541
    @jameshopkins3541 Рік тому

    UFF NO OKEY. SO DISGUSTING BLA BLA BLAAAAAA

  • @kartiksharma7589
    @kartiksharma7589 10 місяців тому

    Such an amazing session. But i cant understand as to why eta is used in generating new value of w that too without conditions. Can someone clear this up. Would be much help

    • @rolandduplessis5132
      @rolandduplessis5132 9 місяців тому

      That was a bit quick right. 😅
      If my math serves me right, eta is the value by which you jump after each iteration.
      Almost the same as the learning rate in which is in alot of ai stuff. I'm probably butchering the explanation.
      But all you need to know is that it is a parameter you play around with in these types of models and the lower it is the longer it takes for the model to reach the minimum and vice versa

    • @amittiwariat
      @amittiwariat 9 місяців тому

      Here the problem is relatively simpler i mean the graph is simple. There is just one minimum. In case where we have functions where there are more than 1 minimum, the slope is flat or there is a narrow pit in a graph, it becomes essential that we control the step size by which we decrease the gradient after each iteration otherwise we might miss the minimum. If we decrease the starting point everytime with a larger value we are decending down the graph too fast and at some point it will skip the minimum point and would never converge. Also if there at any point in graph a plateau then a very small step size would believe that to be minimum as it would never be able to cross it in such small iterations. So we play around with this value to get desired result and to reduce the error in order to have better predictions.

    • @OkarinHououinKyouma
      @OkarinHououinKyouma 3 місяці тому

      ​@@rolandduplessis5132you mean the step size

  • @chassan
    @chassan Рік тому +1

    WHY DON'T YOU. EXPLAIN HOW THE WORD "ALGORITHM" COME FROM? IT'S THE SOUL OF AI!