Markov Models | Markov Chains | Markov Property | Solved Numerical | Part 2

Поділитися
Вставка
  • Опубліковано 14 гру 2024

КОМЕНТАРІ • 33

  • @kaulkaul8898
    @kaulkaul8898 4 роки тому +29

    P( t3=S | t1=R, t2=C) => P( t3 = S | t2 = C) because state of t3 is independent of t1 and only dependent on t2. t1=R should have no effect here and should be ignored. Therefore the answer to the second question should be 0.75 or 75%. Aren't you breaking the Markov Property by writing P( t3=S | t1=R, t2=C) => P( t3=S | t2=C) * P( t3=S | t1=R) ....?

  • @arazsharma4781
    @arazsharma4781 3 роки тому +14

    For the second question, sir you got confused. t3 only depends on t2 for 1st order. For 2nd order we could do that, but we don't have the information :D

  • @nawfalguefrachi2071
    @nawfalguefrachi2071 2 роки тому +2

    Great job great examples and clear explanation
    thank you for this wonderful content
    Keep it up

    • @binodsuman
      @binodsuman  Рік тому

      Glad this Markov Model Model video was helpful for you! Keep Learning !!

  • @rohitmania1
    @rohitmania1 4 роки тому +12

    For 2nd numerical, @7:00 Should the answer be 0.75 ? No need to consider past event?

  • @vindubhojanam123
    @vindubhojanam123 11 місяців тому

    Awesome explanation sir

  • @lamnguyentrong275
    @lamnguyentrong275 4 роки тому +1

    love the videos that have exercises and practice.

  • @vatsalshah7557
    @vatsalshah7557 Рік тому

    Awesome video!
    Much thanks!

  • @vipinverma5087
    @vipinverma5087 7 місяців тому +1

    great vedio, thank you

  • @MrPrincemohanty
    @MrPrincemohanty 4 роки тому +1

    Excellent...

  • @vikaskushwaha892
    @vikaskushwaha892 3 роки тому

    .The transistion diagram of three states : sunny,foggy, rainy .the state transistion probablites are mentioned.assume that weather is yesterday was 'foggy' and today it is again 'foggy' what is the probablity of tommorrow will be sunny?

  • @melroypereira6697
    @melroypereira6697 2 роки тому +1

    Thank you.

    • @binodsuman
      @binodsuman  2 роки тому

      Good to know, you liked and found useful this Markov tutorial series. Keep Learning !!

  • @Slayer-ft6tl
    @Slayer-ft6tl 2 роки тому

    thank you

  • @sanjaymundra6473
    @sanjaymundra6473 3 роки тому +2

    "Pi" x P(t+1)/P(t)
    formula has "Pi" (Initial probability), why not multiplying this with Probability?

    • @mvikyk
      @mvikyk 3 роки тому

      Have the same question. For first two questions, initial probability is not considered, but for last question initial probability is considered. Why so?

  • @nature..1787
    @nature..1787 2 роки тому +5

    camera is moving every time.. no need to take so much closeup shots. Its okay to take entire board in the frame.
    It becomes so difficult to understand what's written.

  • @pratheeeeeesh4839
    @pratheeeeeesh4839 4 роки тому

    at 4.02 shouldn't it be p(t3/t2)*p(t2/t1)*p(t1)

    • @harshpreet909
      @harshpreet909 3 роки тому

      no, it's a given state of t1. So why calculate probability for that

  • @jayantsinghrajput8199
    @jayantsinghrajput8199 8 місяців тому +1

    Hindi hi bol lete sirji english ki RIP krdi

  • @brownbaseyt3807
    @brownbaseyt3807 2 роки тому +2

    sir you should just speak in hindi , if its difficult to explain in english , sometimes its confusing to hear it.

  • @Areeva2407
    @Areeva2407 4 роки тому +3

    VIDEO COVERAGE IS POOR - CAMERA IS CONSTANTLY MOVING
    LET THE AUDIENCE HAVE FULL VIEW OF THE SCREEN AFTER SOLUTION
    50% BOARD IS NOT VISIBLE ALL THE TIME

  • @chiranjitmandal8011
    @chiranjitmandal8011 Рік тому

    Haklanna bandh kar oor vdo banna