Sufficient Statistics and the Factorization Theorem

Поділитися
Вставка
  • Опубліковано 7 лют 2025
  • Buy my full-length statistics, data science, and SQL courses here:
    linktr.ee/bria...
    This video teaches you all about sufficient statistics - what they are, why they're important and useful, and how to find them using the factorization theorem, with examples for the Binomial and Poisson distribution.

КОМЕНТАРІ • 44

  • @lexi218
    @lexi218 5 місяців тому +10

    You explained this so well! I wish my lecturers explained everything this way.

  • @charlesSTATS
    @charlesSTATS 7 місяців тому +1

    I love how you put the context of sufficiency in real life chance events. Thank you for this gold video!

  • @qkdnrnskfirnsvabk
    @qkdnrnskfirnsvabk 8 місяців тому +1

    Thanks for the straightforward explanation!! Now I can understand why "sufficient" is sufficient!

  • @HimuraK1
    @HimuraK1 6 днів тому

    Keep it up! Appreciate your videos.

  • @ops428
    @ops428 7 місяців тому

    I'm glad I found your channel. I have never seen a better explanation of mathematical statistics, nobody else is even close! You are doing an amazing job there

  • @dolynk
    @dolynk 9 місяців тому +1

    This is a great, intuitive explanation. Thanks!

  • @ЧеловекПаук-л3д
    @ЧеловекПаук-л3д 11 місяців тому

    Thank you very much!!!
    Very clear, usefull and understandable

  • @maryziperman4410
    @maryziperman4410 9 місяців тому

    thank you soooooo much. this was so helpful for my college final in mathematical statistics at Texas a&m!!!! you are incredibly gifted!

  • @DonFranciscoUSF
    @DonFranciscoUSF 10 місяців тому

    This is a fantastic explanation, clear, simple, and short :)

  • @yasamanboroon-zn2lu
    @yasamanboroon-zn2lu 9 місяців тому +2

    It was awesome please continue 🔥

  • @RoyalYoutube_PRO
    @RoyalYoutube_PRO 7 місяців тому

    3:04 I love how he describe the indepence of these samples by talking about the coins coming from '3 sets of 10 flips' ... this ensures that the second sample isn't reliant on the first and the third sample isn't reliant on the second and first and so on... in other words, the samples are independent
    If the samples were taken from a single set of binomial, the probabilty of success of second flip as well as first flip is dependent on success or fail of first sample

    • @statswithbrian
      @statswithbrian  7 місяців тому

      To be clear, we are still assuming all the 30 flips are independent and have the same probability of heads - we are just changing how summarize the data. Whether we talking about each flip individually, 3 sets of 10, or 1 set of 30, all 30 coin flips are independent.

  • @aldenc.9461
    @aldenc.9461 9 місяців тому

    Really impressed with your videos, keep on making more!

  • @phillipmunkhuwa5435
    @phillipmunkhuwa5435 8 місяців тому

    Great explanation

  • @TaoLeaf
    @TaoLeaf 11 місяців тому

    Keep up the good work!

  • @snehashishghosh7258
    @snehashishghosh7258 5 місяців тому

    Clear and concise

  • @MarcoBova
    @MarcoBova 4 місяці тому

    Really neat explanation and video, could you explain minimal sufficiency with concrete example as in this video?

  • @raltonkistnasamy6599
    @raltonkistnasamy6599 9 місяців тому

    thank u so much man u explained it so so well

  • @awongiwengxanga7196
    @awongiwengxanga7196 10 місяців тому

    Thank you!

  • @jwbpark
    @jwbpark 7 місяців тому

    you are a genius

  • @andi-w6p
    @andi-w6p 2 місяці тому

    If the one explaining truly understands the concept well, his explanation will be easy to understand. So, if I haven't been able to grasp my professor's convoluted explanations all this time, it could be because he doesn't actually understand the concept very well.

  • @jakeaustria5445
    @jakeaustria5445 4 місяці тому

    Thank You

  • @matteomorellini5974
    @matteomorellini5974 10 місяців тому

    Thanks for the video, I'm not grasping only one concept: why is the summation of X_i sufficient in the binomial case (I assume this means we won't need the number of trials)? Shouldn't we know the number of successes with respect to the total trials? For example of course the summation of X_i = 3 where n=5 and where n=100 should give different probabilities

    • @statswithbrian
      @statswithbrian  10 місяців тому +1

      Yes, you're totally correct. We do need to know the number of trials, but that's usually known to us already, so in that case the # of successes is equivalent to the proportion of successes because we can just divide by the (already known) number of trials. (If the number of trials were *also* an unknown parameter that we were trying to learn about, then the number of successes alone would not be sufficient for learning about the probability of success). Let me know if that makes sense or if I can try to clarify further.

    • @matteomorellini5974
      @matteomorellini5974 10 місяців тому

      @@statswithbrian yep that's more than 🥁🥁🥁sufficient! Thanks again

    • @nimeshamohottige9872
      @nimeshamohottige9872 9 місяців тому

      Great work.Thank you

  • @ashsingh2175
    @ashsingh2175 10 місяців тому

    great!

  • @raltonkistnasamy6599
    @raltonkistnasamy6599 9 місяців тому

    thank u thank u thank u

  • @ninuuh
    @ninuuh 7 місяців тому

    I have questions about statistical inference. Can you help me solve them?

    • @statswithbrian
      @statswithbrian  7 місяців тому

      If you have a question related to the video, I may be able to help. If it’s not related to the video, I probably can’t help.

    • @ninuuh
      @ninuuh 7 місяців тому

      @@statswithbrian It is about statistical inference, unbiased estimator and sufficient statistic

    • @ninuuh
      @ninuuh 7 місяців тому

      It is related to statistical inference, adequate statistics and an unbiased estimator@@statswithbrian

    • @ninuuh
      @ninuuh 7 місяців тому

      It is about statistical inference, unbiased estimator and sufficient statistic​@@statswithbrian

    • @ninuuh
      @ninuuh 7 місяців тому

      @@statswithbrian Yes, related to the video