Discover How LLMs Work by Dissecting Llama

Поділитися
Вставка
  • Опубліковано 9 лют 2025

КОМЕНТАРІ • 7

  • @Ahmad3d1
    @Ahmad3d1 9 днів тому +1

    Concise, complete and easy to understand. Thanks!

  • @FuzailShaikh
    @FuzailShaikh 7 днів тому

    I had no idea we could provide custom logit processors, awesome! Thanks a lot!

  • @Diacred
    @Diacred 9 днів тому

    Really great video, thank you, I hope more like these are coming!

  • @IainAttwater
    @IainAttwater 11 днів тому +1

    So I really like how you cover a very complex subject matter simply. There are many moving parts to an LLM and your explanation allows folks to better understand what is going on. Its also useful for reminding some of us that use and train LLMs why advanced toolsets like Windsurf get it wrong every now and then too.

  • @AIByJohannes
    @AIByJohannes 9 днів тому

    Great video!

  • @YifanBTH
    @YifanBTH 13 днів тому +1

    So cleaningly explained! How do these concepts tie into the common API parameters for OpenAI e.g. temperature, top_k etc?

    • @juliaturc1
      @juliaturc1  13 днів тому +1

      Good question! The temperature controls how smooth the probability distribution is (high temperature => smooth distribution => wild predictions). And top-k limits sampling to the k most probably tokens (important especially for high temperatures so that it doesn't go totally rogue).