Everything is possible in math

Поділитися
Вставка
  • Опубліковано 28 лис 2024

КОМЕНТАРІ • 105

  • @HoSza1
    @HoSza1 3 місяці тому +14

    Why do you overcomplicate?
    x⁴=-4 ⇒ x²=±2i ⇒ x=±(1+i) for x²=2i and x=±(-1+i) for x²=-2i. And so x=±1±i. Done, good place to stop.

    • @khaledf3977
      @khaledf3977 3 місяці тому +1

      How did u solved x^2=2i

    • @HoSza1
      @HoSza1 3 місяці тому +2

      ​@@khaledf3977​ A method for calculating square roots for complex numbers: halve the argument and take the square root of the lenght. for 2i, the arg equals 𝜋/2 and the length is 2, so its square root is a complex number r whose arg is 𝜋/4 and its length is √2. The polar form of r is r = √2(cos(𝜋/4)+isin(𝜋/4)) = √2(√2/2+i√2/2) = 2/2+2i/2 = 1+i. And of course -1-i is also a root of 2i. Checking the validity: (1+i)² = 1+2i-1 = 2i and (-1-i)² = 1+2i-i = 2i.

  • @pelasgeuspelasgeus4634
    @pelasgeuspelasgeus4634 4 місяці тому +38

    That equation has no solution in the real world.

    • @GeoffBarnes-l9k
      @GeoffBarnes-l9k 4 місяці тому +6

      lol, I see what you did there

    • @mr.d8747
      @mr.d8747 4 місяці тому +5

      *That's why the complex world exists*

    • @pelasgeuspelasgeus4634
      @pelasgeuspelasgeus4634 4 місяці тому

      @@mr.d8747 You mean science fiction world where non countable numbers produce countable results. Think about it a bit...

    • @atharvaSafew
      @atharvaSafew 4 місяці тому +6

      Just imagine the answer

    • @pelasgeuspelasgeus4634
      @pelasgeuspelasgeus4634 4 місяці тому

      ​@@atharvaSafew😂 Precisely. An imaginary solution that has no tangible, countable, actual depiction in real world. Usable only for youtube videos and Academia papers...

  • @just_another_person_who_li4675
    @just_another_person_who_li4675 4 місяці тому +6

    x^4 = -4
    add 4 to each side
    x^4 + 4 = 0
    Notice how it’s not a sum of fourths? We’ll use it anyways.
    a = x, b = 4^1/4
    (a^2 + sqrt2(ab) + b^2)(a^2 - sqrt2(ab) + b^2) = 0
    (x^2 + sqrt2((4^1/4)x) + (4^1/4)^2)(x^2 - sqrt2((4^1/4)x) + (4^1/4)^2) = 0
    Simplify the 3rd term in each bracket, and 4^1/4 to sqrt2
    (x^2 + sqrt2(sqrt2(x)) + 2)(x^2 - sqrt2(sqrt2(x)) + 2) = 0
    Multiply the 2nd term
    (x^2 + 2x + 2)(x^2 - 2x + 2) = 0
    Solve for each case
    Case 1:
    (x^2 + 2x + 2) = 0
    Use the quadratic formula
    a = 1, b = 2, c = 2
    D = b^2 - 4ac
    D = 2^2 - 4(1)(2)
    D = 4 - 8
    D = - 4
    x = (-b +- sqrtD)/2a
    Substitute in values
    x = (-2 +- sqrt(-4))/2(1)
    Expand the denominator and sqrt the -4
    x = (-2 +- 2i)/2
    Simplify
    x = -1 +- i
    Case 2:
    (x^2 - 2x + 2) = 0
    Use the quadratic formula
    a = 1, b = -2, c = 2
    D = b^2 - 4ac
    D = (-2)^2 - 4(1)(2)
    D = 4 - 8
    D = - 4
    x = (-b +- sqrtD)/2a
    Substitute in values
    x = (-(-2) +- sqrt(-4))/2(1)
    Expand the denominator, sqrt the -4 and simplify the -(-2)
    x = (2 +- 2i)/2
    Simplify
    x = 1 +- i
    4 complex solutions:
    x = - 1 - i, 1 - i, - 1 + i, 1 + i

  • @jpl569
    @jpl569 4 місяці тому +9

    If you don’t know about complex numbers, this equation has no real solutions.
    If you know about complex numbers, then you are familiar with Moivre formula, Euler formula (exp iπ = - 1), and the roots of unity…
    So, letting Y = X / √2, the equation becomes Y^4 = -1.
    The Y solutions are the fourth roots of - 1, i.e. exp (iπ / 4 + ikπ / 2) for k = 0, 1, 2 and 3.
    Coming back to X, the solutions are : {1 + i, -1 + i, -1 - i, 1 - i} .
    Thanks for your videos !

    • @pelasgeuspelasgeus4634
      @pelasgeuspelasgeus4634 2 місяці тому

      @@jpl569 Right. So, since you know complex numbers and don't care about real world, go to your employer and ask him to pay you in imaginary units. Dork.

    • @PestanaGaming
      @PestanaGaming Місяць тому

      ​@@pelasgeuspelasgeus4634bro really got salty because someone mentioned complex numbers

    • @pelasgeuspelasgeus4634
      @pelasgeuspelasgeus4634 Місяць тому

      @@PestanaGaming You can't do the same if you like. Or explain complex numbers by using marvel characters...

  • @prashnaprashant4770
    @prashnaprashant4770 4 місяці тому +13

    After seeing this equation, one could easily say : It will surely have complex solutions. Great work! 👍👍😄😄

    • @kpdywo848
      @kpdywo848 4 місяці тому +1

      YES : The equation must be expressed in polar form. So X^4 = 4eiπ(2k+1). 4^(1/4) = 2^1/2; les racines sont alors : x(0,1,2,3) = Sqrt(2).e[iπ(2k+1)[/4...What gives in algebraic form for k=0,1,2,3: x0 = 1+i, x1=-1+i, x2= -1-i, x3=1-i. No needs 11 mn 07, in 2 minutes it's done. By the way this demonstrates the computational power of algebra in C

    • @smileorcry7204
      @smileorcry7204 29 днів тому +1

      Since it has complex solution(answer is iota) so it is indeed complex😅

    • @prashnaprashant4770
      @prashnaprashant4770 29 днів тому

      that's great, but he did this question in such a great way that a class 9 student can also understand ( as me ). but it was a easy question ,easily solved as well.

  • @kpdywo848
    @kpdywo848 4 місяці тому +2

    The equation must be expressed in polar form. So X^4 = 4eiπ(2k+1). 4^(1/4) = 2^1/2; les racines sont alors : x(0,1,2,3) = Sqrt(2).e[iπ(2k+1)[/4...What gives in algebraic form for k=0,1,2,3: x0 = 1+i, x1=-1+i, x2= -1-i, x3=1-i. No needs 11 mn 07, in 2 minutes it's done. By the way this demonstrates the computational power of algebra in C

  • @higher_mathematics
    @higher_mathematics  4 місяці тому +13

    Thank you for watching. Much love and respect. Have a great day! What do you think about this question?❤❤❤

  • @igalbitan5096
    @igalbitan5096 4 місяці тому +2

    I would have used Euler exponentiation to get to those results (-4 = 4 * e^i*Pi).

    • @kpdywo848
      @kpdywo848 4 місяці тому +2

      it could be simply
      YES : The equation must be expressed in polar form. So X^4 = 4eiπ(2k+1). 4^(1/4) = 2^1/2; les racines sont alors : x(0,1,2,3) = Sqrt(2).e[iπ(2k+1)[/4...What gives in algebraic form for k=0,1,2,3: x0 = 1+i, x1=-1+i, x2= -1-i, x3=1-i. No needs 11 mn 07, in 2 minutes it's done. By the way this demonstrates the computational power of algebra in C

  • @andreasproteus1465
    @andreasproteus1465 4 місяці тому +4

    x = √2exp(π(2k+1)i/4) = √2(cos(π(2k+1)/4) + isin(π(2k+1)/4)), where k = 0,1,2,3. i.e. x = ±1 ± i

    • @kpdywo848
      @kpdywo848 4 місяці тому +1

      it could be simply, I've done exactly that, and solution in 2 minutes

  • @chadbailey3623
    @chadbailey3623 3 місяці тому

    You are amazing!

  • @dalekloss4682
    @dalekloss4682 4 місяці тому +3

    lot of work. easier to use compex arg and complex angle.

  • @Mister_Mouse7
    @Mister_Mouse7 2 місяці тому

    x4=-4
    (x2)2=-4
    (-1).(x2)=√4
    -1.x2=2
    -1=2/x2=>-1/2=1/x2=>sobs -√1/2=1/x
    =>-1/√2=1/x =-√2=x ie
    x=√2i

  • @thundershort997
    @thundershort997 3 місяці тому

    Assalam o Alaikum,
    at this step when we have this expression
    (x^2+3)-4x^2=0
    we can put square root on B.S
    so,
    x^2+-2x+2 is our Q.E
    and we can directly use this eq
    Jazak Allah khair ❤❤

  • @Sen.say.
    @Sen.say. 4 місяці тому +3

    I could only imagine such a solution

  • @prollysine
    @prollysine 3 місяці тому

    pree test , ((-2)^(1/2))^2=? , / 1/2 *2=1 / -> ( -2)^1= - 2 , ((x)^(1/4))^4 = - 4 , -> x= (-4)^(1/4) , partial result , and no complex ...

  • @onkotonkoblu
    @onkotonkoblu 4 місяці тому +3

    Sigma math 🦅

  • @childrenofkoris
    @childrenofkoris 4 місяці тому

    i love this

  • @hippophile
    @hippophile 4 місяці тому

    Such simple equations are most easily understood with an Argand Diagram (on the complex plane). But then I always did like algebraic geometry :).

  • @IlyouhaStudio
    @IlyouhaStudio 4 місяці тому +5

    How about ±√(2i) ?

    • @Paul_Schulze
      @Paul_Schulze 4 місяці тому

      This are only 2 solutions where I would expect 4 ...

    • @keescanalfp5143
      @keescanalfp5143 4 місяці тому +1

      yeah , think that principally both
      x = ±√(2i) and
      x = ±√(-2i)
      are possible roots .
      however in a so called solution we are just supposed to work away the i and the minus sign from under the root sign .
      suggest you'll get those four
      ±1 ± i ,
      so with arguments
      ¼π, ¾π, 5π/4, 7π/4 .

    • @keescanalfp5143
      @keescanalfp5143 4 місяці тому

      oh , and with modulus
      |¹²³⁴x| = √2 .

  • @thunderpokemon2456
    @thunderpokemon2456 3 місяці тому

    Cool equation

  • @ishanya001
    @ishanya001 3 місяці тому

    What about x= (2i)^1/2

  • @HarshwardhanLande
    @HarshwardhanLande 3 місяці тому

    X belongs to phi and
    X is equal to fourth root of -4

  • @jiangchuYT
    @jiangchuYT 4 місяці тому

    It's easier to apply the De Moivre's Theorem.

  • @HamagaCalapyron
    @HamagaCalapyron 3 місяці тому

    This is 4 solutions Complexes

  • @cal18338
    @cal18338 3 місяці тому

    Just do
    4rt(-4) or sqrt(2i)
    Bam done

  • @sushmagovindraodarokar8727
    @sushmagovindraodarokar8727 3 місяці тому

    I found solution to be √2 please tell me if it's correct

    • @sushmagovindraodarokar8727
      @sushmagovindraodarokar8727 3 місяці тому

      X=-4^1/4
      Multiplying RHS power by 2/2 gives.
      16^1/8
      Converting it to lowest from gives √2.
      Will anyone tell me if it's correct please

    • @frederickvomjupiter258
      @frederickvomjupiter258 3 місяці тому

      @@sushmagovindraodarokar8727 If you do ^4 with any real number you will always get a positive result. You need a complex number to get the negative result "-4" when doing ^4 . You are right, that √2 is the magnitude of the solution, but it has a real and a compex part.

  • @Nguyễn-j9q
    @Nguyễn-j9q 4 місяці тому +1

    X = ±√-4

    • @pecareca6735
      @pecareca6735 4 місяці тому +3

      That solution of yours is wrong.

    • @Nguyễn-j9q
      @Nguyễn-j9q 4 місяці тому +2

      Prove it wrong then because (√-4)² is -4

    • @mauriziograndi1750
      @mauriziograndi1750 4 місяці тому +3

      With all respect for your skills if you cannot simplify further than this, then in an exam situation you probably will run out of time for other questions.

    • @just_another_person_who_li4675
      @just_another_person_who_li4675 4 місяці тому +2

      @@Nguyễn-j9q
      Let’s substitute your answer
      (sqrt(-4))^4 = -4
      rewrite -4 as a power which you rewrite as, a^(exponent/denominator)
      ((-4)^1/2)^4 = -4
      Simplify the left side of the equation, using the (a^m)^n = a^mn rule
      (-4)^((1/2)(4)) = -4
      Simplify the exponent
      (-4)^(4/2) = -4
      Simplify it again
      (-4)^2 = -4
      16 =/= -4
      Using the negative answer will yield the same result since sqrt(x^2) = |x|
      Your error was that you saw the “x^4” as “x^2”.
      Your second error was not simplifying your answer to ±2i

    • @Nguyễn-j9q
      @Nguyễn-j9q 4 місяці тому +1

      Ok

  • @DragosStan1956
    @DragosStan1956 4 місяці тому +2

    You spent 11’ and several page scrolls for something really elementary. Just express -1 in polar form, for k = 0…3, probably you’ve heard about Euler identity…

    • @robertlezama1958
      @robertlezama1958 4 місяці тому +5

      Is the rudeness necessary? This is a community for math enthusiasts, please don't contaminate the space with hubris and discourage sharing. Some of us are still learning other methods and your manner is distracting from your math skills. You could also just leave the channel.

  • @jurajhprobyt2107
    @jurajhprobyt2107 4 місяці тому

    Trol me why you are not using comp and programming? You can learn how to spend your life tíme better.

  • @KushalChaki
    @KushalChaki 3 місяці тому +1

    Scam

  • @aryandwivedi5168
    @aryandwivedi5168 4 місяці тому

    Maths taught me everything has a solution.

  • @mariadelgado4393
    @mariadelgado4393 4 місяці тому

    I will go back to study identities. We do not divide by zero and your fast explanation was not clear. Bye!

  • @pnachtwey
    @pnachtwey 4 місяці тому +1

    This is simple and obvious. Think of rotating/ multiplying vectors. It is a matter of how you look at the problem. The obvious thingis that the magnitude must be the 4th root of 4. No problem The next thing is to divide 180 deg by 45 and get 45 degr

    • @pelasgeuspelasgeus4634
      @pelasgeuspelasgeus4634 2 місяці тому

      Really? So, having in mind we live in a 3d world with 3 real axes, can you describe where is the location of imaginary axis?

  • @rubenmeyerrbn
    @rubenmeyerrbn 4 місяці тому

    1,414213562373095i ???