Let's Solve A Polynomial Equation

Поділитися
Вставка
  • Опубліковано 5 лис 2024

КОМЕНТАРІ • 7

  • @Helleb-hd8cj
    @Helleb-hd8cj 3 місяці тому

    I did something different
    I used x⁴+2kx²+k²=2kx²-7x+12+k²
    x⁴-2kx²+k²=-2kx²-7x+12-k²
    k=0.5
    Hence I root squared the equation on both sides getting x²+7.5-12=0
    x²-6.5-12=0
    Hence I used the quadratic formula to find four solutions

  • @TedHopp
    @TedHopp 5 місяців тому

    It's worth mentioning that the other roots of k^3+48k-49 will lead to the same four roots for x. We know this, even without working each case out, from the fundamental theorem of algebra.

  • @victoriakurt441
    @victoriakurt441 5 місяців тому

    Love the solution!

  • @Attitude_boy_300
    @Attitude_boy_300 Місяць тому

    I'm in standard 10th but i understand this clearly

  • @dutchie265
    @dutchie265 5 місяців тому

    At 7:55 the cubic polynomial would also have two complex solutions, and therefore four complex a values.
    Does this mean that the original quartic can also be factored with complex coefficients? How would that look like?
    Ultimately the roots would need to be the same.

    • @MrGeorge1896
      @MrGeorge1896 5 місяців тому +1

      Well we do know all four roots so we write the polynomial as (1/16) (2x + 1 + √13) (2x + 1-- √13) (2x - 1 + i√15) (2x - 1 - i√15) = 0
      If you like you can multiply real and complex roots to form two quadratic factors respectively - each with complex coefficients.