Modular Arithmetic: Pick the Right Number | Putnam 2001 A5

Поділитися
Вставка
  • Опубліковано 30 вер 2024
  • #Math #Putnam #NumberTheory
    In this video we solve a problem from Putnam 2001.
    Subscribe @letsthinkcritically !!
    ------------------------------------------------
    I share Maths problems and Maths topics from well-known contests, exams and also from viewers around the world. Apart from sharing solutions to these problems, I also share my intuitions and first thoughts when I tried to solve these problems.
    Subscribe: www.youtube.co...
    Email me (address in video) your suggestions! lets.think.critically.27@gmail.com

КОМЕНТАРІ • 47

  • @littlefermat
    @littlefermat 3 роки тому +47

    I like this kind of problems, because it is really funny when you take the mod of the variable you need to find!

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

  • @RedRad1990
    @RedRad1990 3 роки тому +23

    There's another pair of consecutive divisors of 2002: they're 1 and 2

    • @maximilianklumpp862
      @maximilianklumpp862 3 роки тому +9

      yes, but 1^n-2^(n+1)=2001 has no integer solution

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

  • @srijanbhowmick9570
    @srijanbhowmick9570 3 роки тому +25

    Probably the most purest NT problem in Putnam ever , loved it !

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

  • @armacham
    @armacham 3 роки тому +12

    I solved it without modular arithmetic.
    set n=1, no solutions (just do quadratic formula)
    set n=2, you get a cubic polynomial, solve with RRT (you can disregard non-rational solutions of course)
    so you find (13, 2) is a solution
    and obviously a can't be bigger than 13
    so you can test all possible a values between 1...12. Brute force it to show there are no solutions and you're done

    • @fix5072
      @fix5072 3 роки тому +3

      actually, you'd only have to check for a up to 8, since 8^4-9^3=3367

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

    • @leif1075
      @leif1075 2 роки тому

      Excuse me why can't a be bigger than 13
      .you don't k own that it could.be any positive integer o ly restriction is a^n times a has to be bigger than the subtracted part of (a +1)^n to get a positive number.did you plug I. 14 or somethingto guessand check??.

  • @fix5072
    @fix5072 3 роки тому +9

    wouldnt it be faster to show that there are no solutions for n>2 by calculus?

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

    • @chriswinchell1570
      @chriswinchell1570 2 роки тому

      That’s what I thought. LHS is monotonically increasing. Rhs is constant. There can only be one solution.

    • @wesleydeng71
      @wesleydeng71 2 роки тому +3

      @@chriswinchell1570 Well, actually LHS is not monotonically increasing. It has a maximum at n=18 and then decreases to -inf.

  • @mcwulf25
    @mcwulf25 3 роки тому +8

    Good one. I got part way into this by expanding the binomial and adding 1 to both sides. The LHS then has "a" as a factor and the right hand side is 2002 so I quickly knew a|2002.
    Playing around with mod 3 shows n is even.
    But that's as far as I got!!!!!!!

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

    • @dozenal9420
      @dozenal9420 11 місяців тому +2

      I also did exactly this, and I also found that a = 1 (mod 3) - i.e. that a must be one of the 8 divisors of 2002 which are congruent to 1 modulo 3. (1, 7, 13, 22, 91, 154, 286, and 2002)
      I then just did the casework for these, which actually turned out to be very simple!
      a = 1, a = 7 give no solutions.
      a = 13 gives the (only) solution, (13, 2).
      A simple calculus argument (assuming n is real) shows that the larger a is, the smaller n is for equality to hold. But since n is natural it must be exactly 1, as that is the only natural number less than 2, but this yields no solutions for a = {22, 91, 153, 286, 2002}. By the way, if we take 0 as a natural, we also get (2002,0). :)
      I'm actually surprised that this is on the Putnam at all, since it's just destroyed by high school calculus and simple logic and casework, lol.

  • @alex_0641
    @alex_0641 3 роки тому +10

    Also a=2002 and n=0

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

    • @waitinblackout
      @waitinblackout 2 роки тому +2

      that was also my first (good) guess. But nobody talks about it...

    • @alex_0641
      @alex_0641 2 роки тому +2

      @@waitinblackout due to the fact that they have the set of whole numbers, which are positive integers with zero: 0,1,2 etc.
      That's why (probably) he didn't take 0
      The problem implies naturals, not wholes

  • @willbishop1355
    @willbishop1355 2 роки тому +4

    Surely the mod 8 trick at the end is not necessary. You can just prove that 13^(n+1) - 14^n is a strictly increasing function when n > 2, so it never returns to the value 2001.
    (13^(n+2) - 14^(n+1)) - (13^(n+1) - 14^n) = (13^(n+1) - 14^n)*13 + 14^n
    This is guaranteed to be positive if 13^(n+1) - 14^n > 0, which we know holds true for n=1, so by induction it's true for all n. Right?

    • @urojony3177
      @urojony3177 9 місяців тому +2

      I thought so, but it's not right. 14^n is asymptotically bigger than 13^(n+1), so for big enough n, 13^(n+1)

  • @xxfazenoscoper360doesnosco7
    @xxfazenoscoper360doesnosco7 3 роки тому +3

    When I solved it I was like ok but then I realised it was Putnam problem holy shit lol

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

  • @bholamahto2259
    @bholamahto2259 3 роки тому +1

    My solution before watching the vid:
    (a)^(n+1) - (a+1) ^(n) + 1 = 2002
    Since (a) is factor of left hand side of eqn (using binomial) therefore "(a) is a factor of 200"__1st eqn.
    Now, given eqn can be written as:
    (K-1) ^(n+1) - k^(n) + 1 = 2002 [ where k=a+1]
    Again we have k as factor of LHS, so "k=(a+1) is factor of 2002__2nd eqn"
    Now using our 1st and 2nd eqn we can say a(a+1) ia a factor of 2002.
    We can write 2002 = 1*2*7*11*13
    Or 2002 = 13*14*11
    So a = 1 or a =13.
    Clearly a= 1 gives no solution(couz LSH become -ve)
    So a = 13
    Finally, putting a = 13 in the eqn can making some logical guess for n,
    We get 13^3 - 14^2 = 2001,
    Therefor a=13 and n=2.

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

  • @NeerajKumar-gk9kz
    @NeerajKumar-gk9kz 3 місяці тому

    Hi can u tell me how approxh to solve putnam problam

  • @factorial1059
    @factorial1059 3 роки тому +2

    that was problem A5? lolz

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

  • @mcwulf25
    @mcwulf25 2 роки тому +2

    This is a good problem, combining a few ideas. I got as far as the 13,14 bit but didn't think of mod 8.

    • @leif1075
      @leif1075 2 роки тому +2

      Why would anyone thinknof mod 8..just use mod 2 since 2002 is zero mod 2

    • @FaranAiki
      @FaranAiki Рік тому +2

      It is intuitive actually since 3² - 1 = 8

  • @taheralabbar9853
    @taheralabbar9853 3 роки тому +3

    Nice✌🏻

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

  • @mikelivstone
    @mikelivstone 7 місяців тому

    I can't remember: Is calculus allowed on the Putnam? If it is, you might consider the following for the proof that n = 3 is the only valid value of n:
    Let f(x) = a^(x+1) - a^x, with a = 13 in this case.
    Then f'(x) = lna((x+1)a^(x+1) -xa^x) > f(x) > 0 for all x≥1. Similarly, f''(x) > 0 for all x≥1.
    Therefore f is increasing at all natural x, so f(x) = 2001 can only be true at x = 3.
    Admittedly, I might have skipped a couple of steps in the middle, but how's that?

  • @242math
    @242math 3 роки тому

    great job, thanks for sharing

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

  • @ericzhu6620
    @ericzhu6620 3 роки тому

    Finally a competition problem!

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html

  • @baxodirxonsaidov2277
    @baxodirxonsaidov2277 2 роки тому

    Why did you use from zero measure for a?

  • @राजनगोंगल
    @राजनगोंगल 3 роки тому

    👍👍👍

    • @ABCD-bm2hs
      @ABCD-bm2hs 2 роки тому

      ua-cam.com/video/HMHLL4YAXdc/v-deo.html