Implementing Machine Learninng Pipelines USsing Sklearn And Python

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 54

  • @krishnaik06
    @krishnaik06  2 роки тому +5

    Check out all the courses coming up in iNeuron
    Full Stack Data Science Bootcamp 2.0(Start date : Sept 17th):ineuron.ai/course/Full-Stack-Data-Science-BootCamp-2.0
    Data Science Industry Ready Projects Courses(Start date:24th September): ineuron.ai/course/Industry-Ready-Projects
    30 days data science interview prep(Start date: 19th September) :ineuron.ai/course/Data-Science-Interview
    You can use Krish10 coupon code to additional avail 10% off

  • @isaackodera9441
    @isaackodera9441 11 місяців тому +3

    Couldn't be more grateful than this. This process in its entirety solves and prevents data leakage. With you, learning is always guaranteed. Time for implementation. A happy subscriber.

  • @rameshcheppali4353
    @rameshcheppali4353 9 місяців тому

    This is one of the best video on Pipelines on you tube .Very Nice .Well Explained and content is very good.

  • @moinuddinkhan928
    @moinuddinkhan928 2 роки тому +3

    I am from aligarh uttar pradesh......background commerce......I am seeing ur videos to learn data science.......i think am the only person from my city........right now seeing your python playlist.......and I want to become a data scientist......pray for me.......inspired by you and campus X........take care

  • @yaswanthkosuru
    @yaswanthkosuru Рік тому +1

    i learned a lot of new things which makes machine learning project in an organized manner.

  • @anirudsaichenna3158
    @anirudsaichenna3158 Рік тому

    Hello Krish, Thank you for your detailed explenation. You are an amazing teacher, the content, the approach and intent of making sure that it reaches the learner, actually I can add lot more qualities of this video if I want to continue. I really appreciate your effort in making the videos on ML. I passed through many other youtube channels for this particular topic, and honestly I felt like had I come to this video first I would have saved lot of my time. Once again thanks alot. Stay blessed.

  • @ritugujela8345
    @ritugujela8345 2 роки тому +11

    sir, can you please make a video on making an end to end project using ML pipelines that includes all techniques like missing value imputation, OHE, Feature Scaling, Feature selection and linear regression ?

  • @sirginirgin4808
    @sirginirgin4808 Рік тому

    Many thanks. Kindly keep the hood work. I was following you for the last few years since you started your first videos by recommending data science books and channels ect... Yor proffisional videos are getting better and better. Many thanks again for your github link too.

  • @msgupta07
    @msgupta07 2 роки тому +1

    This is the video I want because pipelining related videos are not that good on UA-cam. Plz.. kale it with grid search

  • @narottamsaini6951
    @narottamsaini6951 2 роки тому +6

    Hi Krish, in next video plz also try to incorporate how to add custom made function doing loading of file, doing date formatting and removing invalid record as a part pf pipeline!!!

  • @ashraf_isb
    @ashraf_isb 6 місяців тому +1

    At 6:32 sec when Krish says like, stopping video to like and then continuing

  • @longtruong9935
    @longtruong9935 2 роки тому +1

    the best pipeline video ever, thanks for sharing

  • @xygameming
    @xygameming Рік тому

    Really awesome sir your way of explanation . We loved it.🎉🎉🎉

  • @pritamrajbhar9504
    @pritamrajbhar9504 11 місяців тому

    This is what I was looking for, thank you so much krish sir.😊

  • @sriramasatya1393
    @sriramasatya1393 9 місяців тому

    Sir.. Thank you very very much.. you explained the procedure so well!!

  • @dsdjiitian
    @dsdjiitian 2 роки тому

    Thank you sir for this amazing video on pipeline it really helped me in understanding the concept of pipelines 🙏

  • @PM-cs6jq
    @PM-cs6jq 2 роки тому

    thank you Krish. Such an awesome teacher you are! Makes learning so much more fun!

  • @harshitsingh715
    @harshitsingh715 2 роки тому

    This is the best video I have gonna through for this topic
    sir, please create it with tensorflow for deep learning

  • @vargabghosh5497
    @vargabghosh5497 Рік тому

    your videos make things easy

  • @saifuddinlokhand5769
    @saifuddinlokhand5769 2 роки тому

    Useful Concept with proper explanation

  • @kasoziabudusalaamu50
    @kasoziabudusalaamu50 Рік тому

    thank you for sharing the knowledge. I have really learnt a lot.

  • @kwenevdavidapine4661
    @kwenevdavidapine4661 2 роки тому +1

    Thank you for this explanation.
    I have one question; when do we need to use Union? Can it be used in place of make_pipeline? Thank you.

  • @ShamaAmeer-i4x
    @ShamaAmeer-i4x 17 годин тому

    Sir I have a question.. how can we use iterative imputer in pipelines

  • @VARUNyoutube
    @VARUNyoutube 2 роки тому +1

    What is the difference between TechNeuron FSDS cousre and FSDS bootcamp

  • @radhekrashna2148
    @radhekrashna2148 Рік тому

    Thank you so much for very good quality content

  • @bbagchi3771
    @bbagchi3771 7 місяців тому

    Excellent video. Thanks for sharing.

  • @0SIGMA
    @0SIGMA 2 роки тому +1

    I had forgotten this but thanks sir!!!!!

  • @raja.57
    @raja.57 Місяць тому

    Amazing, i really enjoyed it

  • @prateekkumar.1325
    @prateekkumar.1325 10 місяців тому

    what if i would like to add std transformer,pvc, linear regression,KNN and svc .How shall i proceed,sir?

  • @dingaroo2003
    @dingaroo2003 2 роки тому +1

    Hi Krish, great video again! How can I add a metrics like ConfusionMatrix to my pipeline? Is it to add another pipeline?

  • @Xnshau
    @Xnshau 2 роки тому

    Thank you Krish 👍 nicely explained

  • @aniruddhmaitra1728
    @aniruddhmaitra1728 2 роки тому +1

    If we have a NN model, how will we make it a part of the pipeline?
    Awesome video.

  • @muralikrishnapolipallivenk2572
    @muralikrishnapolipallivenk2572 2 роки тому +1

    Hi Krish, great video, very good explanation, one question is how do we define the pipeline and predict if one of the columns is a text.

  • @Web3_Tutorial
    @Web3_Tutorial Місяць тому

    Sir I can't buy Data Science course from Ineuron platform

  • @yashesh7264
    @yashesh7264 2 роки тому +1

    great stuff sir we love you

  • @rohinik2223
    @rohinik2223 2 роки тому

    Hi,thanks for sharing
    Can you share mlops with gcp videos plz
    Thanks

  • @lakshmiv5745
    @lakshmiv5745 Рік тому

    explain pipeline for embedded system example and types and real life application. What uses

  • @tejasaiyarlagadda644
    @tejasaiyarlagadda644 2 роки тому

    Hi bro...please make video for datascience as fresher to create a resume pls....

  • @omkarbelpatre5
    @omkarbelpatre5 2 роки тому

    sir apne bola tha data analytics roadmap ki video Dalunga sir ?

  • @shashankhegde1258
    @shashankhegde1258 Рік тому

    excellent !. THanks

  • @Pune_Tithe_Kay_Une
    @Pune_Tithe_Kay_Une 2 роки тому

    First view biggest fan machine learning

  • @siddhantkohli5063
    @siddhantkohli5063 2 роки тому

    Sir what are your thoughts on IITM online bsc data science degree is it worth it ?

  • @phoenix4939
    @phoenix4939 Рік тому

    Really Good Video!

  • @exodus_ow
    @exodus_ow 25 днів тому

    As a freshman in uni, I’m hella confused watching this 😂

  • @sivachaitanya6330
    @sivachaitanya6330 2 роки тому

    Very late doing this video krish...

  • @sandipansarkar9211
    @sandipansarkar9211 2 роки тому

    finished watching

  • @xendu-d9v
    @xendu-d9v 2 роки тому

    thanks sir

  • @HARSHRAJ-2023
    @HARSHRAJ-2023 2 роки тому

    Looks useful 👍🏻

  • @ajaykushwaha4233
    @ajaykushwaha4233 2 роки тому

    Hi Krish, is it compulsory to write program using pipe line ?

  • @bivasbisht1244
    @bivasbisht1244 2 роки тому

    amazing

  • @sandipansarkar9211
    @sandipansarkar9211 2 роки тому

    finished coding

  • @juancastillo5571
    @juancastillo5571 6 місяців тому

    but you hadnt fit the colum pipeline.... why????