How to create minimum viable product for machine learning projects - Weather prediction

Поділитися
Вставка
  • Опубліковано 6 лют 2025

КОМЕНТАРІ • 4

  • @AIwithDrMo
    @AIwithDrMo  2 роки тому +2

    Timecodes
    0:00 - Intro
    0:19 - Problem Definition
    2:14 - Importing Data
    4:46 - Changing data types - to_datetime
    5:48 - Changing data types - LabelEncoder
    8:28 - Reindexing - set_index
    9:47 - Converting time series to conventional ML problem by shifting dataframe
    18:55 - Model training
    23:28 - Model evaluation
    28:00 - Creating python files for MVP
    29:32 - train.py
    36:51 - predict.py

  • @SP-db6sh
    @SP-db6sh 2 роки тому +1

    Step stone of DS projects ... Plz make video on it to work with this step with customisable pipelines for different usecases .

  • @kamakshishinde9984
    @kamakshishinde9984 2 роки тому

    Thank you for the video. I found it very informative
    Can you please show how to run .py files for example where do we need to give filepath name and filter city name and can you also please show how the results looks like that are generated from .py file
    Thank you!

  • @peterpham4410
    @peterpham4410 Рік тому

    I have very important questions regarding the CDEGS. Please reply if you are existed.