A Diophantine Equation With Factorials

Поділитися
Вставка
  • Опубліковано 18 лис 2024

КОМЕНТАРІ • 38

  • @cosmolbfu67
    @cosmolbfu67 4 місяці тому +5

    a•6! = b^2
    a•(3^2 • 4^2 • 5) = b^2
    Let a= 5(x^2)
    (3•4•5•x)^2 = b^2
    (60x)^2 = b^2
    So b=60x, a=5(x^2)

  • @WahranRai
    @WahranRai 4 місяці тому +2

    The exponents of the prime factors of a perfect square are even !

  • @paultoutounji3582
    @paultoutounji3582 4 місяці тому

    Very cool and original ! Thank you !

  • @browhat6935
    @browhat6935 4 місяці тому

    5a x 12^2 = b^2
    a = 5^(2n-1), b=12x5^n, non negative int n

  • @Qermaq
    @Qermaq 4 місяці тому

    At first glance: 6! is 2^4 * 3^2 * 5^1. All perfect squares have all prime factors to even exponents. So any number of the form 2^(2k ) * 3^(2m) * 5^(2n-1) * p^2 (where k, m, n and p are non-negative integers) should accomplish this. (Edit: actually, we can simply say 5^(2n-1) * p^2, because the 2 and 3 can be rolled into the p.)

  • @reneverstraeten
    @reneverstraeten 4 місяці тому

    It is much simpler .. every digit in the faculty must be compensated by something to give a square. The 6 by 2*3 to give 6*6, the 4=2x2 is a square already so stripe away 2,3,4 and 6 (2*3*4*6 is square) on the faculty site and they need not be compensated anymore , the 5 cannot be compensated, so it must have factor 5 to give a square 5x5. So a = 5 and b=sqrt(4) *5*6 =60 . I did it without paper ,by head.

  • @squirrelllllllllllllllllllllll
    @squirrelllllllllllllllllllllll 4 місяці тому

    B squared is equal to b x b
    So a x 6! = b x b
    Idk how to explain my working out but you can see 6! = a is a solution, which would also mean that b is equal to both a and 6!
    Therefore 6! which equals 720 is a solution

  • @juergenilse3259
    @juergenilse3259 4 місяці тому

    6!=1*2*3*4*5*6=6*4*5*6=2*2*6*6*5=12*12*5
    So if a*6!=b^2 with natural numbers a and b, a must be dividable by 5, because the lleft side of the equation is diviidable by 5, so b must be diviidable by 5 and b^2 must be dividable by 5^2.
    So a=5 and b=60 is a solution, also a=5 and b=--60. The others solutions are a=5*c^2 with a whole number c and b=60*c. There is no solution with a negative whole number,because the right side of the equationis can never be smmaler than zero.

  • @elbanano7785
    @elbanano7785 4 місяці тому

    I read "Dopamine equation" and wondered what kind of property has this expresion that makes you so happy lol

    • @SyberMath
      @SyberMath  4 місяці тому +1

      Equations always make me happy hehehe 😜

  • @asheredude
    @asheredude 4 місяці тому

    If a = (1/20) the b would be ±6 OR if a=(1/5) b= ±12, so I think there will be infinitely many solutions.

  • @phill3986
    @phill3986 4 місяці тому

    😊😊😊👍👍👍🎉🎉🎉

  • @Fire_Axus
    @Fire_Axus 4 місяці тому +1

    a solution is a=720, b=720

  • @bernardloraditch4903
    @bernardloraditch4903 4 місяці тому

    i did this in my head in 1 minute as i looked at the thumbnail

  • @scottleung9587
    @scottleung9587 4 місяці тому

    Very nice!

  • @Qermaq
    @Qermaq 4 місяці тому

    8:14 I can hear Any Math saying "Nice".

  • @FisicTrapella
    @FisicTrapella 4 місяці тому

    yes!!!!! 👌

  • @honestadministrator
    @honestadministrator 4 місяці тому

    6 !
    = 2 * (3!) * (3! ) * 4 * (5 !) ^2 * 6
    = ( 4 * (3)! * (5!)) ^2 * 3
    Hereby
    a * (6!) = b^2 implies
    a * 3 * ( 4 * (3!) * (5!)) ^2 = b^2
    Hereby
    b = 4 * (3!) * (5!) * 3 = (2!) * (3!) * (6!)
    a = 3

  • @yoav613
    @yoav613 4 місяці тому +1

    Nice

  • @davidsousaRJ
    @davidsousaRJ 4 місяці тому

    Actually any a of the form 5^(2m+1)*c² will work.

    • @SyberMath
      @SyberMath  4 місяці тому

      Same as my solution

  • @giuseppemalaguti435
    @giuseppemalaguti435 4 місяці тому

    6!=720=5*144...a=5,a=20,a=45...a=80...

  • @Chivorn837
    @Chivorn837 4 місяці тому

  • @rakenzarnsworld2
    @rakenzarnsworld2 4 місяці тому

    a = 5, b = 60

  • @xnx_3609
    @xnx_3609 4 місяці тому

    Why is c positive?

  • @snejpu2508
    @snejpu2508 4 місяці тому

    Well, actually that is not quite true. a must be a multiple of 5, agreed. But it might be a multiple of any prime number greater than 5 raised to the power of 2n, where n is an integer. Every prime number might appear or not as a multiple and n can be different for every prime number...

  • @neilmccafferty5886
    @neilmccafferty5886 4 місяці тому

    a=b=6! Surely?

    • @SyberMath
      @SyberMath  4 місяці тому

      That’s a good one!

  • @faeancestor
    @faeancestor 4 місяці тому +1

    you are very intense

    • @SyberMath
      @SyberMath  4 місяці тому

      What does that mean?

  • @mrl9418
    @mrl9418 4 місяці тому

    Bravo. It's not difficult, but it's interesting how you parametrize the solutions with the integers

  • @nathancox6929
    @nathancox6929 4 місяці тому +1

    Why do you ramble on

    • @SyberMath
      @SyberMath  4 місяці тому

      What do you mean?

    • @nathancox6929
      @nathancox6929 4 місяці тому +1

      @@SyberMath i mean that you don’t really get to the point of your problems