Multiplicative Functional Equation

Поділитися
Вставка
  • Опубліковано 7 лис 2024
  • f(xy) = f(x)f(y)
    In this video, I solve the following neat question: Find all continuous functions f such that f(xy) = f(x) f(y). One solution would be f(x) = x^2, but can you think of other ones? I solve this with a clever transformation, by reducing this equation to one that is more familiar. I also discuss the case where x and y are 0 and/or negative, and even mention the non-continuous case. Enjoy!
    Other functional equations:
    f(x+y) = f(x) + f(y): • fx+y = fx + fy (Cauchy's functional equation)
    f(x+y) = f(x)f(y): • f(x+y) = f(x)f(y)
    f(f(f(x))) = x: • Press fff to pay respects
    f'(x) = f(f(x)): • A new hard differentia...
    Subscribe to my channel: / drpeyam
    Check out my Teespring merch: teespring.com/...

КОМЕНТАРІ • 94

  • @blackpenredpen
    @blackpenredpen 4 роки тому +69

    How about det( )?

    • @drpeyam
      @drpeyam  4 роки тому +22

      Whoa, fancy! 😍

    • @Mryeo5354
      @Mryeo5354 4 роки тому +2

      Now that's class

    • @blockthrower3947
      @blockthrower3947 3 роки тому +4

      omg I literally went to the comment section to write "I am dissapointed he didnt get the determinant function here"
      I guess you were already ahead of me by 6 months :(

  • @themathaces8370
    @themathaces8370 4 роки тому +91

    This guy is so pr0 that he says thanks for watching at the beginning of the video

  • @gabrielgral6225
    @gabrielgral6225 4 роки тому +10

    Your videos make math even more interesting. Thank you Dr. Peyam!! 👊🏼

  • @helloitsme7553
    @helloitsme7553 4 роки тому +32

    if we did it for functions from ℝ\{0} to itself, we couldve used group theory since its basically finding the endomorphisms of group ℝ\{0}

    • @drpeyam
      @drpeyam  4 роки тому +23

      🤮🤮🤮

    • @triton62674
      @triton62674 4 роки тому +1

      @@drpeyam 😂😂😂

    • @filippozar8424
      @filippozar8424 4 роки тому +4

      Nope, f(x)=1 also works but that isnt a bijection, is it? Also, |x|, |x^3| and many more. So yeah, while Aut(R\0) would give us many solutions, it still wouldn't cover all of them.

    • @filippozar8424
      @filippozar8424 4 роки тому +2

      What you probably ment was the set of all endomorphisms

    • @helloitsme7553
      @helloitsme7553 4 роки тому +1

      @@filippozar8424 oops sorry

  • @snejpu2508
    @snejpu2508 4 роки тому +10

    The function is 0 at 0 and 1 everywhere else. Has to be f(x)=sgn(x)^2.

  • @thedoublehelix5661
    @thedoublehelix5661 4 роки тому +4

    I was able to solve this by pretty much doing exactly what you did in the video

  • @fmakofmako
    @fmakofmako 4 роки тому +8

    Haven't finished the video yet, but sqrt(xy) does not equal sqrt(x)sqrt(y) for x=y=-1.
    Edit: I see where Peyam makes a more thorough statement at the end.

  • @hyunchangshin3208
    @hyunchangshin3208 2 роки тому +1

    Your solutions are so good.
    I have a question. If f is differentiable,
    f is the following?
    c>1=>f(x)=x^c or x^c(x=>0), -x^c(xf(x)=x,
    f(x)=0 or 1

  • @Smoothcurveup52
    @Smoothcurveup52 2 роки тому +1

    Thank you so much sir
    Best explaination

  • @adamharoon6021
    @adamharoon6021 4 роки тому +1

    This was a very interesting video! I am looking forward to more of your content.

  • @nguyenvanphutrong8415
    @nguyenvanphutrong8415 4 місяці тому

    what a wonderful video, it is very helpful for me thanks a lot

  • @ronycb7168
    @ronycb7168 Рік тому

    Dr Peyam I have a doubt whether x times abs x is odd or even and if it's graph is continuous at 0

  • @pierreabbat6157
    @pierreabbat6157 4 роки тому +12

    I'd like to see a totally discontinuous solution that requires the axiom of choice.

    • @drpeyam
      @drpeyam  4 роки тому +12

      Check out the video on f(x+y) =
      f(x) + f(y) there I define one

  • @marcellomarianetti1770
    @marcellomarianetti1770 4 роки тому

    About f(0), can't we say f(0)=f(0*0*0)=f((0*0)*0)=f(0*0)f(0)=f(0)f(0)f(0)=(f(0))³, then f(0) could be either 1, - 1 or 0? And another question: if f(x) = x^c, and c = ln(f(e)), how can I calculate c if I don't know f? I mean, it's like f(x) = x^(ln(f(e)))

  • @elephantdinosaur2284
    @elephantdinosaur2284 4 роки тому +9

    Please do my favourite functional equation f(x+y) = g(x) + h(y). The assumptions on the functions f,g,h are that they are all real valued functions and f is continuous at 0.

  • @miro.s
    @miro.s 3 роки тому

    f(x)^2 can be also negative or imaginary
    f(sqrt(x)) can be expressed by matrix A with integers, no square roots needed, then A^2 = xI

    • @miro.s
      @miro.s 3 роки тому

      You should show why it can only be positive. It is not in video.

    • @miro.s
      @miro.s 3 роки тому

      Show that cyclic group has only three elements, nothing, 1 and x.

    • @miro.s
      @miro.s 3 роки тому

      Interesting fact is that those three group elements are providing solutions of all 3 characters: trivial, constant, bijective.

    • @miro.s
      @miro.s 3 роки тому

      Cyclic group of four elements is having linear inverse dual that can be represented by -1 and f(x) = -1 or f(x) = -x doesn't hold the bonding condition of endomorphism. So the cyclic group representing character of solutions contains less than four elements.

  • @rockapedra1130
    @rockapedra1130 4 роки тому +1

    Very cool! Thanks!

  • @أبوشاهين-ت6ك
    @أبوشاهين-ت6ك 3 роки тому

    An amazing explication, thanks guy

  • @sarvagyagupta1744
    @sarvagyagupta1744 4 роки тому

    Interesting video. One question though. At 10:53, you write it as f(00). What happens if I write it as f(01) or f(02)? Anything multiplied by 0 is 0.

    • @drpeyam
      @drpeyam  4 роки тому

      Still f(0) but I don’t think you can conclude anything from that

  • @tomatrix7525
    @tomatrix7525 4 роки тому

    Really cool Peyam

  • @sundaybutane9725
    @sundaybutane9725 4 роки тому +19

    Maybe unpopular opinion: Discontinuous functions are way cooler

    • @thedoublehelix5661
      @thedoublehelix5661 4 роки тому +15

      I feel like the space of discontinuous functions are just too too big to understand

    • @whythosenames
      @whythosenames 4 роки тому +4

      Unpopular opinion. I hate those

    • @IoT_
      @IoT_ 4 роки тому +2

      But, they have much way more practical applications then continuous unfortunately

    • @thedoublehelix5661
      @thedoublehelix5661 4 роки тому +1

      @@IoT_ ???? W hat?

    • @IoT_
      @IoT_ 4 роки тому +2

      @@thedoublehelix5661 all real systems are not continuous

  • @jamesstrickland833
    @jamesstrickland833 3 роки тому

    I dont understand the f(x)=f(sqrt(x)*sqrt(x)) argument. Couldn't any f(x) function be written that way implying that no f(x) could ever have a domain with negative values, which isn't true.

  • @richardfredlund3802
    @richardfredlund3802 4 роки тому +1

    so is absolute value function still continuous, despite not being differentiable at 0.

  • @NonTwinBrothers
    @NonTwinBrothers 4 роки тому

    Woah that was pretty cool!

  • @anjanavabiswas8835
    @anjanavabiswas8835 2 роки тому

    Thank you.

  • @davidseed2939
    @davidseed2939 4 роки тому

    note +-(-x)^c is equal to +-(x)^c for integer c. otherwise it is complex

  • @paungpaung8336
    @paungpaung8336 4 роки тому +1

    Thank

  • @egillandersson1780
    @egillandersson1780 4 роки тому

    Nice video ! Thank you

  • @igorface09
    @igorface09 4 роки тому

    Plugging in y=0, f(0)=f(0)f(x) for all x, so f(0)=0 or f(x) is identically 1. Also, f(x)=f(1)f(x), so f(1)=1 or f(x) is identically 0.

    • @igorface09
      @igorface09 4 роки тому

      @@drpeyam lol rip, i believe you

    • @drpeyam
      @drpeyam  4 роки тому

      Yeah sorry, you can’t define f(0) = 1, so f(0) has to be 0. But I think the function f(0) = 1 but f = 0 otherwise works, that’s why I included it

    • @igorface09
      @igorface09 4 роки тому

      @@drpeyam That'd be a cool example, but if you take x=0 and y=/=0, f(xy)=f(0)=1, but f(x)f(y)=0, because f(y)=0.

    • @drpeyam
      @drpeyam  4 роки тому +1

      Sorry I meant to say f is 0 at 0 and identically 1 otherwise

  • @yahavitah2791
    @yahavitah2791 3 роки тому

    How about lim if each lim exsist

  • @psilvakimo
    @psilvakimo 3 роки тому

    What if c = 1/2 when x f= sqrt(-x) = isqrt(x).

  • @rafael9285
    @rafael9285 3 роки тому

    Very good!

  • @pbj4184
    @pbj4184 4 роки тому

    17:22 1-del(x)

  • @srenlaichinger3687
    @srenlaichinger3687 4 роки тому +6

    i think, that in case for c

  • @notepm8338
    @notepm8338 3 роки тому

    what is the application case in real life from this math theory ?

    • @drpeyam
      @drpeyam  3 роки тому

      Quantum mechanics

  • @moshadj
    @moshadj 4 роки тому

    Group homomorphisms between the the reals under multiplication onto itself

  • @Kdd160
    @Kdd160 4 роки тому

    Interesting vid

  • @sir4982
    @sir4982 3 роки тому +1

    Revenge of the c's though...

  • @G.Aaron.Fisher
    @G.Aaron.Fisher 3 роки тому +1

    You missed the case where f(x) is constant zero.

    • @drpeyam
      @drpeyam  3 роки тому

      I mentioned the case 0

  • @patryslawfrackowiak6690
    @patryslawfrackowiak6690 3 роки тому

    The function 1/x is continuous because it's defined on R \ {0}.

    • @dmhouse1024
      @dmhouse1024 3 роки тому

      Here though we're looking at functions on R, and there is no way of defining 1/x at x=0 that is continuous.

    • @patryslawfrackowiak6690
      @patryslawfrackowiak6690 3 роки тому

      @@dmhouse1024 But you can't define 1/x on R. The natural domain of it is R\{0}, you can't define it on R.

    • @dmhouse1024
      @dmhouse1024 3 роки тому +1

      @@patryslawfrackowiak6690 what I mean is that there is no function f on R such that f(x) = 1/x for all x!=0 and f is continuous. In other words there is no way of "extending" 1/x to include a value at x=0 while preserving continuity.

    • @patryslawfrackowiak6690
      @patryslawfrackowiak6690 3 роки тому

      @@dmhouse1024 Yes, and we're both right. There's no such function, as you've just said, but the function 1/x itself (without any extending) is continuous on all possible domain.

  • @bakixanmadatov4620
    @bakixanmadatov4620 3 роки тому

    👍👍👍👍

  • @andytao794
    @andytao794 2 роки тому

    can you please show the solution to the homework I'm only 16 i can't understand

  • @syedmdabid7191
    @syedmdabid7191 3 роки тому

    It's a conditional identity, ain't true eternal, known as Cauchy's formula.

  • @awesomechannel7713
    @awesomechannel7713 Рік тому

    In the math Olympiad you'd not get the full points for the problem as you missed f(x) = 0 in the conclusion section, doctor.

  • @Kikillorulez
    @Kikillorulez 3 роки тому

    It's no one going to comment on that Tina Fey joke?

  • @Chrisuan
    @Chrisuan 4 роки тому

    E

  • @ahmadkalaoun3473
    @ahmadkalaoun3473 4 роки тому +1

    I don't think you can define c using f , it's like a circular reasoning..but still a great video :)

  • @vittorio1159
    @vittorio1159 3 роки тому

    You forgot f(x)=0

  • @ifnispanol3297
    @ifnispanol3297 2 роки тому

    Pintagili