How to classify second order PDE

Поділитися
Вставка
  • Опубліковано 16 січ 2025

КОМЕНТАРІ • 24

  • @Duxaization
    @Duxaization 5 років тому +33

    The man doesn't even have to move to do maths, amazing.

  • @huisun8301
    @huisun8301 10 років тому +5

    I'm instructing PDEs recently. This series of videos gives me an idea of where the students might have difficulties with and allow me to lecture in a more understandable way. Thank you, Chris.

  • @mrlooken2777
    @mrlooken2777 4 роки тому +2

    Just two words: "Thank you"
    Best video ive watched about the topic

  • @mfanocharles3000
    @mfanocharles3000 4 роки тому +3

    I have learnt a lot. It is a nice presentation ever

  • @maxlopalegz5500
    @maxlopalegz5500 4 роки тому +3

    Thank you so much!! You really helped me understand the topics. Will keep coming back to your explanations.

  • @LM_25_11
    @LM_25_11 Рік тому +1

    @ 4:26 is the similarity between the equations the only reason for calling PDEs elliptic, hyperbolic and parabolic??

  • @vikramaditya2104
    @vikramaditya2104 4 роки тому +2

    Sir.. You are excellent..... Teaching is outstanding.... Where do you teach 😁

  • @AJ-et3vf
    @AJ-et3vf 3 роки тому

    Thank you very much for this helpful and insightful video. Highly appreciate this.

  • @edwincuevas9965
    @edwincuevas9965 4 роки тому +1

    This is awesome!

  • @Naomi-ke9zh
    @Naomi-ke9zh 10 років тому +9

    Is there a video to help understand how to classify pdes as linear, semi-linear, quasi-linear and non-linear?

    • @Galois1683
      @Galois1683 5 років тому +1

      You can take a look on Partial Differential Equations by Lawrence Evans

  • @usbusb1517
    @usbusb1517 6 років тому +1

    Thanks! Nice video, concise and easy to be understood.

  • @lifredamil8203
    @lifredamil8203 8 років тому +2

    Hi Chris,I saw a few videos you uploaded and they really helped but I'm stuck at applying this discriminant technique to pdes defined in 3-dimensional and 4-dimensional regions...I might be doing it wrongly though...I would love it if you could classify these pdes1) Uxx + 13Uyy + 13Uzz + Uwz + 4Uxy + 24Uyz + 4Uzw = 02) (y²-z²)Uxx + (z²-x²)Uyy + (x²-y²)Uzz=f(x,y,z,Ux,Uy,Uz)And could you please upload a video on how to classify pdes according to the eigen values of the coefficient matrix Aij??....This is because, I came across some pdes that had different classifications from these two different methods.-discriminant-Eigenvalues

  • @infinity-and-regards
    @infinity-and-regards 5 років тому

    Do you have any videos where you elaborate on why you use this classification?

  • @MrAndrew778899
    @MrAndrew778899 6 років тому +1

    Thank you, Chris. You might have explained the last portion little bit clearer, otherwise its awesome video.

  • @SuhailKhan-eb3vr
    @SuhailKhan-eb3vr 3 роки тому

    I need thi book sir

  • @away312
    @away312 11 років тому +1

    very useful

  • @bansishah2091
    @bansishah2091 3 роки тому

    can someone please describe the components of the equation please ?

  • @amritkshetri5528
    @amritkshetri5528 5 років тому

    thankyou sir. i understood it very wel. but i think the regions for y1/x are not propery mapped.

  • @frankbrandse6473
    @frankbrandse6473 Рік тому

    Why do you put the right hand side of eqn. 7 equal to 0? I mean, it is allowed to be any constant, isn't it?

  • @harishsingh5491
    @harishsingh5491 5 років тому

    can you please explain why do we need to classify 2nd order PDEs. It doesnt help in solving them. So why do we need the classification. What do we gain from such classification, there must have been a reason like for example same type of pdes always give same physical meaning or something like that.

  • @tariqueaziz959
    @tariqueaziz959 9 років тому

    Good

  • @JohnSmith-up3wo
    @JohnSmith-up3wo 11 років тому

    First!