Physics-Informed Neural Networks (PINNs) - An Introduction - Ben Moseley | Jousef Murad

Поділитися
Вставка
  • Опубліковано 15 січ 2025

КОМЕНТАРІ • 39

  • @JousefLITE
    @JousefLITE  2 роки тому +7

    🧠PINNS in MATLAB: ua-cam.com/video/RTR_RklvAUQ/v-deo.html

  • @meetplace
    @meetplace Рік тому +23

    +1 for Oxford PhD saying "timesing" instead of multiplying... respect! :D

  • @abdulwaris8
    @abdulwaris8 Рік тому +2

    Thanks for sharing this recording from the workshop. Thanks, Ben!

  • @carriefu458
    @carriefu458 9 місяців тому

    I love all of the questions!! 🤓 Ben is a great teacher!

  • @hreedishkakoty6771
    @hreedishkakoty6771 8 місяців тому +3

    at 14:30, it seems like external force will not operate on Unn. External force will be a constant term in the physics loss function.

    • @PaulGoyes
      @PaulGoyes 5 місяців тому

      But it is multiplying by U_NN term, so the loss can be derivate with respect to thega

  • @muhammadsohaib681
    @muhammadsohaib681 Рік тому +6

    Thank you for such an informative lecture on PINN.

  • @vitezslavstemberafemCalc
    @vitezslavstemberafemCalc Рік тому +2

    Very nice and clear presentation.

  • @raju-bitter
    @raju-bitter Рік тому +1

    Fantastic introduction, much appreciated!

  • @canxkoz
    @canxkoz Рік тому +2

    Great video on this fascinating field. Thanks for sharing.

  •  Рік тому +1

    Nice lesson and clear presentation. Thank you!

  • @theneumann7
    @theneumann7 4 місяці тому

    Thanks for this!

  • @suleymanemirakin
    @suleymanemirakin 10 місяців тому

    Great work!

  • @vegetablebake
    @vegetablebake Рік тому +1

    A great introduction and massive thanks for sharing the knowledge!

  • @rupeshvinaykya4202
    @rupeshvinaykya4202 Рік тому +11

    Thanks for PINN , is code available ?

    • @aakashs1806
      @aakashs1806 9 місяців тому

      I think MIT developed something related to this, not sure whether it is opensource

  • @ajaytaneja111
    @ajaytaneja111 Рік тому +7

    We are talking of relatively simple oscillator problem. How about if we have complex geometries for which FEM methods are most suited today? I have been reading of physics informed graph nets for the purpose of complex geomeries. Do you have any references for complex domains? Lets say i have a complex shaped mechanical component subjected to pressure fir which i normslly use FEM.?

    • @imolafodor4667
      @imolafodor4667 6 днів тому

      i have seen videos about PINNs talking also about fractional PINNs, which would be maybe interesting for you

  • @cunningham.s_law
    @cunningham.s_law Рік тому +1

    I wonder if this give better results with PDE for option pricing

  • @fkeyvan
    @fkeyvan Рік тому

    nice tutorial. thank you.

  • @jyothish75
    @jyothish75 Рік тому +2

    could you please provide the example code of PINN?. Link in the comments not working.

  • @xuchen3032
    @xuchen3032 4 місяці тому

    Thank you for your sharing!! But how to deal with the high frequency situation? looking forward to your reply.

  • @WeiZhang-sj9sl
    @WeiZhang-sj9sl Рік тому

    great work

  • @tanuavi98
    @tanuavi98 10 місяців тому +1

    code link where can I get?

  • @mklu0611
    @mklu0611 Рік тому +1

    OMG, very cool video!!! The training performance is highly dependent on the "lambda" value, do you have ideas about how to define its value? Many thanks.

  • @SahbaZehisaadat
    @SahbaZehisaadat Місяць тому

    Greattttt

  • @AdrienLegendre
    @AdrienLegendre 10 місяців тому

    A possibly useful method would be to have the neural network identify the invariants or a Lie group for a differential equation. Another approach, compute all scalar quantities and have neural network find the right combination of scalar quantities to find a Lagrangian for a physical system.

  • @huph-j2f
    @huph-j2f Рік тому

    well done,the trend information is also very important,and it can be involved by a partial differential equation.i think maybe the parameters of the partial differential equation can also be the parameters of the neural network PINNS

  • @shankyxyz
    @shankyxyz Рік тому

    similar question as some others. When we are solving even standard physics electrostatics, heat transfer etc, forget time domain, so only elliptic equations on complex CAD, I am wondering what applications can PINNs be used for. as opposed to using FEM. maybe shape optimization type problems? or inverse problems?

  • @sadeghmirzaei9330
    @sadeghmirzaei9330 Рік тому

    Great 👍

  • @AIDreamStudio786
    @AIDreamStudio786 6 місяців тому +1

    Where can we download the python script file

  • @andreaskrmmerbagge8831
    @andreaskrmmerbagge8831 2 місяці тому

    10/10

  • @imolafodor4667
    @imolafodor4667 6 днів тому

    hello, are x_i/x_j vectors of the x,y coordinates, denoted as x_1 and x_2? from the initial slide i have understood that x_i and x_j form "together" the individual input datapoint to the network, x_i being eg. the initial conditions, or any measured quantity and x_j being a value that can be obtained from direct differentiation, but from the second slide i am doubting this assumption

  • @TerragonCFD
    @TerragonCFD Рік тому +2

    Im a beginner in PyTorch and OpenFOAM since the last few years, but today i learned that my "dream" is called "PINN" 🙂

  • @ihmejakki2731
    @ihmejakki2731 11 місяців тому

    Very nice lesson! I'm stuck on the Task 3 though, I can't get the network to converge for w0=80. Here's the code if anyone can spot what I'm missing here:
    torch.manual_seed(123)
    # define a neural network to train
    pinn = FCN(1,1,32,3)
    # define additional a,b learnable parameters in the ansatz
    # TODO: write code here
    a = torch.nn.Parameter(torch.zeros(1, requires_grad=True))
    b = torch.nn.Parameter(torch.zeros(1, requires_grad=True))
    # define boundary points, for the boundary loss
    t_boundary = torch.tensor(0.).view(-1,1).requires_grad_(True)
    # define training points over the entire domain, for the physics loss
    t_physics = torch.linspace(0,1,60).view(-1,1).requires_grad_(True)
    # train the PINN
    d, w0 = 2, 80# note w0 is higher!
    mu, k = 2*d, w0**2
    t_test = torch.linspace(0,1,300).view(-1,1)
    u_exact = exact_solution(d, w0, t_test)
    # add a,b to the optimiser
    # TODO: write code here
    optimiser = torch.optim.Adam(list(pinn.parameters())+[a]+[b],lr=1e-3)
    for i in range(15001):
    optimiser.zero_grad()
    # compute each term of the PINN loss function above
    # using the following hyperparameters:
    lambda1, lambda2 = 1e-1, 1e-4
    # compute boundary loss
    # TODO: write code here (change to ansatz formulation)
    u = pinn(t_boundary)*torch.sin(a*t_boundary+b)
    loss1 = (torch.squeeze(u) - 1)**2
    dudt = torch.autograd.grad(u, t_boundary, torch.ones_like(u), create_graph=True)[0]
    loss2 = (torch.squeeze(dudt) - 0)**2
    # compute physics loss
    # TODO: write code here (change to ansatz formulation)
    u = pinn(t_physics)*torch.sin(a*t_physics+b)
    dudt = torch.autograd.grad(u, t_physics, torch.ones_like(u), create_graph=True)[0]
    d2udt2 = torch.autograd.grad(dudt, t_physics, torch.ones_like(dudt), create_graph=True)[0]
    loss3 = torch.mean((d2udt2 + mu*dudt + k*u)**2)
    # backpropagate joint loss, take optimiser step
    # TODO: write code here
    loss = loss1 + lambda1*loss2 + lambda2*loss3
    loss.backward()
    optimiser.step()
    # plot the result as training progresses
    if i % 5000 == 0:
    #print(u.abs().mean().item(), dudt.abs().mean().item(), d2udt2.abs().mean().item())
    u = (pinn(t_test)*torch.sin(a*t_test+b)).detach()
    plt.figure(figsize=(6,2.5))
    plt.scatter(t_physics.detach()[:,0],
    torch.zeros_like(t_physics)[:,0], s=20, lw=0, color="tab:green", alpha=0.6)
    plt.scatter(t_boundary.detach()[:,0],
    torch.zeros_like(t_boundary)[:,0], s=20, lw=0, color="tab:red", alpha=0.6)
    plt.plot(t_test[:,0], u_exact[:,0], label="Exact solution", color="tab:grey", alpha=0.6)
    plt.plot(t_test[:,0], u[:,0], label="PINN solution", color="tab:green")
    plt.title(f"Training step {i}")
    plt.legend()
    plt.show()

  • @baseone1079
    @baseone1079 5 місяців тому

    Hi Ben my Question is if I'm having an issue with audio and data strings bombardment maliciously engaging my synapse. Do you think fitting pinn's or over fitting pinn's to stabilise the nuclei would be the Answer. I've tried neural Clips and they come out/ tried Apache CNN and Hadoop to stabilise the nucleus. its been 4 years now and its very aggravating/infuriating and frustrating any help would be greatly appreciated