Understanding Aerodynamic Drag

Поділитися
Вставка
  • Опубліковано 27 січ 2025

КОМЕНТАРІ • 527

  • @rashedabuamoud7794
    @rashedabuamoud7794 4 роки тому +360

    Just finished my fluid mechanics course, this video sums everything up so elegantly. Love your videos!!!

    • @FormulaJuan75
      @FormulaJuan75 3 роки тому +1

      69 likes. Perfection 👌

    • @dantheman3022
      @dantheman3022 3 роки тому +1

      I failed that course 2 times in eng school 😂😂😂

  • @tmmyvrctt11
    @tmmyvrctt11 4 роки тому +1173

    This video is more useful than whole semester fluid course

    • @naveenkondeti5494
      @naveenkondeti5494 4 роки тому +21

      True 😂😂👍.
      It's the conclusion of our complete semester

    • @og805kanker
      @og805kanker 4 роки тому +18

      That’s very unlikely 😂 what school do you go to

    • @a_s_3.o
      @a_s_3.o 4 роки тому +3

      Exactly yAr..itne knowledge ke liye daily class,uske bad bhi concept clear nhi ho pata

    • @arkitkabir6950
      @arkitkabir6950 4 роки тому +13

      @@a_s_3.o try prof Suman chakrobarty videos for fluid ( available in UA-cam). I have watched all of them. Really good to build elementary level concept.

    • @xinlulin6463
      @xinlulin6463 4 роки тому +1

      Thanks,I love this vedio

  • @mallikarjunv5
    @mallikarjunv5 4 роки тому +125

    0:00 - 0:30. Introduction to Drag (What is drag ?)
    0:50 - 1:05. Why is drag an unwanted force ?
    1:30 - 2: 18 How is drag generated ? and formula for calculation of drag
    2:19 - 2:31 Components of Drag force (Pressure drag and Friction drag )
    2:32 - 3:19 Pressure drag in detail
    3:20 - 4:47 Flow separation in detail
    4:48 - 5:00 Why do golf balls have dimples?
    ( Dimples increase turbulence and hence reduce flow separation. Reduced flow separation means less "pressure drag" and so the ball travels large distance).
    5:01 - 7:15 Turbulence and its effects on Pressure drag and friction drag
    7:17 : 8:05 Ridges on shark skin as bio inspired solution to reduce friction drag.
    8:07 - 9:31 Effect of geometry and the orientation on Total drag.
    9:32 : 9 :51 Quantification of drag force through integral approach.
    9:52 Simplified formula for drag force.
    9:53 - 10:11 The drag coefficient and how it's calculated.
    10:22 - 10:36 The reference area (Emphasis on the selection of Area.)
    10:37-12 :25 Re Vs Cd and arriving at stokes law.
    12:26 -13:26 Arriving at terminal velocity of a sphere.
    13:29-13:53 Constructing a Viscometer (In breif).
    13:57-14:22 Components of drag forces of particular interest in aviation

  • @TheEfficientEngineer
    @TheEfficientEngineer  4 роки тому +110

    I hope you enjoyed this look at aerodynamic drag! I'll be covering lift in the next video.
    ✈️
    The bundle with CuriosityStream mentioned at the end of the video is no longer available - sign up directly to Nebula with this link to get the 40% discount! go.nebula.tv/theefficientengineer
    And here's a link to the extended version of this video - nebula.tv/videos/the-efficient-engineer-understanding-aerodynamic-drag-extended-version

    • @rohi7597
      @rohi7597 4 роки тому +1

      Hi sir, what software applications used for animation

    • @urp8916
      @urp8916 4 роки тому

      Thank you

    • @Bel...QWERTY1
      @Bel...QWERTY1 4 роки тому

      please ....why hydrostatic forces exist in fluids and even in gases???

    • @naveenkondeti5494
      @naveenkondeti5494 4 роки тому

      @@Bel...QWERTY1 due to the body force components ( eg :- due to gravity)
      Once go through the hydrostatic law in fluid mechanics for better clarity

    • @Bel...QWERTY1
      @Bel...QWERTY1 4 роки тому

      @@naveenkondeti5494 If it is due to gravity why or how it exists on vertical surfaces..??..i find it really hard to be understood im sorry

  • @muhammadabdullah3467
    @muhammadabdullah3467 2 роки тому +37

    This video is essentially a summary of chap 9 in the fluid mechanics book by Munson. I love how this channel explains these important topics with such simplicity. Keep up the good work.

    • @Insomnia_tic
      @Insomnia_tic 11 місяців тому

      ….simplicity? 😨 high school physics student here haha

    • @muhammadabdullah3467
      @muhammadabdullah3467 10 місяців тому

      You'll eventually get it bro. Everything happens on its time.@@Insomnia_tic

  • @titorotod
    @titorotod 4 роки тому +37

    I got so excited to see this on the feed, I was long waiting for a video about this. I started working on computational fluid dynamics half a year ago and it took me a lot of time to learn the theory behind it. You make everything look so easy to understand, you truly are a gifted teacher. Cheers!

  • @shauryagupta4990
    @shauryagupta4990 4 роки тому +23

    Atlast ...... A video on drag, the way you explain concepts is really amazing..... Please keep uploading more and also more frequently

  • @stefanguiton
    @stefanguiton 4 роки тому +27

    another gem of a video, keep up the great work you do!

  • @berkdogu8150
    @berkdogu8150 4 роки тому +7

    The Efficient Engineer has actually encouraged us to prepare such videos because all videos in this channel are very descriptive and informative.

  • @aliptera
    @aliptera 3 роки тому +2

    The most intuitive and real physical explanation of all aerodynamic forces I can think of - is modification of static atmospheric pressure around an object due to air movement. Atmospheric pressure is defined by random bombardment of air molecules as per the kinetic theory of gases; this randomness is changed by the macroscopic air movement. As a result the pressure is modified around the object creating forces that we're labelling as drag and lift.

  • @LJ7v
    @LJ7v 4 роки тому +9

    Clear, concise, straight to the point, great illustrations, please keep doing those ! Hi from France !

  • @naveenkondeti5494
    @naveenkondeti5494 4 роки тому +10

    Wahh...!
    Solved many of my doubts regarding fluid mechanics in a single video. The best of best 👏👍.
    Engineers of our generation are blessed to have such sources.
    Thanks for providing such content and keep doing it.

    • @ChrisVink-b5b
      @ChrisVink-b5b 12 днів тому

      Fluid mechanics is a deep subject. I feel like telling all businesses, employers and companies in America I have been totally psychologically destroyed. All people around me are perfect, and have perfectly economically secure lives. I feel miserable about not having a vehicle as well. My life feels about being isolated in total disempowerment. Do I need to see a psychiatrist to find out why I am isolated failure in America and among my relatives. I feel so bad every day, I want to get away from this location and be around some people that cannot torment me with failure.

  • @magarinoskevin2063
    @magarinoskevin2063 4 роки тому +3

    Somehow you manage to cover the topics I'm coursing right now at Uni
    Truly a gem of a channel

  • @qolbola_bilimuz4424
    @qolbola_bilimuz4424 3 роки тому

    brother, just watching the tutorial and thinking wow you put a good background music at such a level that helps the listener to concentrate many make it too loud to hear the speaker, great job.

  • @NikitaKaminskyy
    @NikitaKaminskyy 4 роки тому +17

    As I said it many times, I wish someone explained me these concepts as well as you do back in the days!

  • @mohammedfawaaz693
    @mohammedfawaaz693 4 роки тому +1

    Mannnnn......why the hell do you explain so much gooooood.....you really explain clearly and hats off proud to the animation.....you the best

  • @alexanderunguez9633
    @alexanderunguez9633 3 роки тому +5

    I really enjoyed that you pointed out that pressure drag becomes more significant for blunt objects and friction drag becomes more significant for thin structures(and pipes I should add). This is something that isn't specifically mentioned in a lot of literature, but is an important intuition.

  • @Megadanne98
    @Megadanne98 4 роки тому +27

    This is not the first time you've managed to time your content with the same subjects I'm studying at the time , great video!

  • @mosayed4792
    @mosayed4792 4 роки тому +5

    I was thinking about you from a while, I said to myself why didnt he uploaded something till the moment and here you are❤

  • @monishreddy1797
    @monishreddy1797 3 роки тому

    I watched this video more than five times completely, and each time I watch it, i understood this video better
    When i first watched it I had doubts like why turbulent flow delays boundary layer separation..why does flow separation cause dictate drag force..and how majestic is the graph at 11:44 I believe when I come back later, I would understand this video better.

  • @mazenelgabalawy3966
    @mazenelgabalawy3966 4 роки тому +1

    These types of videos and people like you sir are the reason I still have hope I can truly understand what university professors poorly teach.

  • @abdelrahmanelnabawy7434
    @abdelrahmanelnabawy7434 4 роки тому +1

    bro your videos is significant worth the time

  • @ivansandoval946
    @ivansandoval946 4 роки тому +3

    Thanks mate, glad there're people like you making this kind of content! I really appreciate it!

  • @AJ-et3vf
    @AJ-et3vf 3 роки тому +2

    Awesome, informative, and engaging video! Videos and channels like these will revolutionize education and learning for future engineers ❤️

  • @elena6516
    @elena6516 4 роки тому +1

    One if the better explanations on this topic. Excellent work. Keep it up please!

  • @kariossyr6018
    @kariossyr6018 4 роки тому +2

    Really great! It's so rare to find such simple analysis while being thoroughly! Keep it up. I really enjoyed your comprehensive language.

  • @LeoLanzi
    @LeoLanzi 4 роки тому

    I study high school with mechanical technical in Brazil and my teacher shared your video to my class. Your videos are really good, keep doing that!!! Sorry if i made a mistake in english, i'm still learning. Peace!

  • @chrisdalg89
    @chrisdalg89 4 роки тому +2

    Incredible way to explain so complicated concepts in a clear an intuitive way. Really good job!!! Subscribed for more content!!!!

  • @gzizou_seif
    @gzizou_seif 4 роки тому +1

    This video is out just in time for my fluid mechanics course , thanx

  • @vishnuprabhu1722
    @vishnuprabhu1722 3 роки тому

    Great video! Filled with lot of information. Keep posting. We just enjoying your way of creating video.

  • @michaelbabatunde3915
    @michaelbabatunde3915 3 роки тому

    I am short of words to thank you for clarity of your explanations.
    Thanks sir

  • @calculusguru1063
    @calculusguru1063 Рік тому

    You are a legend well done efficient engineer brilliantly explained

  • @ratfor19
    @ratfor19 4 роки тому

    Never seen or found a video with this level of detail! It's so well explained, just amazing!! Congrats!!

  • @engineeringarts4509
    @engineeringarts4509 4 роки тому

    This video is very excellent - clearly highlighting all the key issues about drag, e.g. how adverse pressure gradient causes flow separation, how dimples on golf ball change boundary transition to delay flow separation and in turn reduce drag, etc. These are very important concepts!!!!

  • @asifraj321
    @asifraj321 2 роки тому

    Amazing tutorial 👍. Looks like whole fluid dynamics is discussed in single video. It Clears most of the doubt.

  • @A.Hisham86
    @A.Hisham86 2 роки тому

    Every time I watched your content, it feels like I assist a course of 1 hour! It's really long, but interesting content! :)

  • @faaizansari6908
    @faaizansari6908 4 роки тому +4

    @ 6:25 it should be steeper in laminar than in turbulent boundary layer. By the way, cheers to your work man👍

    • @jishnuram5777
      @jishnuram5777 4 роки тому +1

      Yes i also think so pls correct me if i am wrong

    • @mecheazy5028
      @mecheazy5028 4 роки тому

      Yes!

    • @pedroferrer9436
      @pedroferrer9436 4 роки тому

      He is right because stress is proportional to dv/dy, so turbulent is steeper in reference to the y axis

    • @TheEfficientEngineer
      @TheEfficientEngineer  4 роки тому

      Yes Pedro is correct. By steepness I'm talking about how quickly the velocity changes as you move away from the surface. The change in velocity is more gradual for the laminar profile, and so the shear stress is lower.

    • @arkitkabir6950
      @arkitkabir6950 4 роки тому

      For turbulent flow although velocity gradient is high and flow is unsteady, when we take statistical average it generally provides uniform profile unlike laminar where it gradually increases. Hence above velocity profile is correct.

  • @de0509
    @de0509 2 роки тому

    Studying engineering and then watching this video = mind blown
    Theres always that missing piece of a puzzle. And for the study of fluid dynamics, I have no idea if humanity will keep unlocking all the secrets of the universe regarding this. I remember from a professor that told that a lot of these constants are found experimentally. I wonder if someday humanity can fully understand how these things are to a point where experimentation wont even be needed

  • @ashrafulislam7021
    @ashrafulislam7021 3 роки тому

    I thought you have over 1 million subscribers. Your content quality is so awesome.

  • @redpheonix6307
    @redpheonix6307 3 роки тому

    i'd just say..... you ought to get more than 316k subs bro. good job and keep up.

  • @ryan_christopher97
    @ryan_christopher97 3 роки тому

    Hey man, you're a legend and your videos are sensational! ❤️

  • @TheD.o.c
    @TheD.o.c 3 роки тому +1

    This helped me and my science partner a LOT Thank You!

  • @sohanherath4610
    @sohanherath4610 4 роки тому +8

    Brilliant just brilliant!

  • @centaureacyanus7026
    @centaureacyanus7026 4 роки тому

    Incredibly well explained! I honestly can't say how grateful I am for your videos, which really help for my engineering studies. Thank you so much!

  • @kirbacilpezo
    @kirbacilpezo 4 роки тому

    You guys doing very good job man. A civil engineer I appreciate it.

  • @Innotutorial
    @Innotutorial 4 роки тому +1

    Brilliant Video as usual.👏👏 Always helpful, inspiring and motivational 🙌👏

  • @amaarquadri
    @amaarquadri 4 роки тому +3

    Great video! I wish I had this at the start of my fluids course!

  • @LazieKat
    @LazieKat 3 роки тому

    We did a viscometer experiment in a fluid dynamics course, we understood, but this explanation makes more intuitive and harder to forget

  • @guillaumequerinjean218
    @guillaumequerinjean218 4 роки тому

    Took my fluids 1 exam yesterday. Damn, can wait to have fluids 2! Awesome content mate!

  • @sameerdesai9494
    @sameerdesai9494 3 роки тому

    cant thank enough for these videos of yours! Waiting for more

  • @Henry-tong
    @Henry-tong Рік тому

    this video is amazing
    i've learned so much from this single video 😀

  • @Thierry080
    @Thierry080 4 роки тому

    Very nicely explained and animated, great job as always!

  • @fateenahmed659
    @fateenahmed659 4 роки тому +2

    This video is so amazingly great. For anyone looking to dig deeper, a very good book is "Introduction to Flight - John Anderson". It explains the math as elegantly as this video does and covers a whole whole lot more.

    • @TheEfficientEngineer
      @TheEfficientEngineer  4 роки тому

      Thanks Fateen! I agree - Introduction to Flight is a great resource.

  • @safooh94
    @safooh94 4 роки тому

    As usual great content that is supplemented by stunning visuals 👍

  • @angelalexandrov2831
    @angelalexandrov2831 4 роки тому

    This is an amazing channel. Keep up the good work

  • @rlshunt824
    @rlshunt824 4 роки тому

    This guy should have 1 M subscribers.

  • @blackguardian89
    @blackguardian89 4 роки тому +1

    Another amazing video! Great work! Thank you!

  • @chankokkeong802
    @chankokkeong802 4 роки тому +9

    Fluid Mechanics
    All I learned from my previous study were solving maths problems only, my lecturer didn't explain the real examples such as golf ball, aeroplane wings, shark skin, etc
    and they are still getting high paid, Respect!!!
    That is why my country always poor, because they fail to educate and the cycle goes on.

    • @dougball328
      @dougball328 Рік тому

      A fun application of the terminal velocity is using a ping pong ball to determine altitude. To see whose rocket goes the highest, you eject a ping pong ball and time how long it takes to get to the ground.

  • @santoshmaurya87
    @santoshmaurya87 4 роки тому +1

    Your all lectures are very useful for us thanks for making this video.🙏👍❤️

  • @deepeshyadav1303
    @deepeshyadav1303 4 роки тому

    I was looking for an answer for a project and here you are!

  • @KrishnaCalling
    @KrishnaCalling 5 місяців тому

    Please continue series on aerodynamics ...your videos are just superb...i request you

  • @dougball328
    @dougball328 Рік тому

    I would recommend a brief explanation of Reynolds number. It is the ratio of the inertia forces to the viscous forces. A simple example is fill a coffee cup full of water. Very slowly tilt the cup. The water will run over the lip and down the side of the cup. This is because the viscous forces are keeping the water attached to the cup. No tilt the cup more until the water flows out of the cup and into a stream away from the cup. Now the inertia forces are dominate. Having said that, I found the video to be quite informative and accurate. (As an aerodynamicist I designed airplanes for nearly 40 years, mostly commercial but a few others tossed in for good measure and professional stimulation)

  • @NeeXnBeatz
    @NeeXnBeatz 2 роки тому

    Man your work is just crazy, thanks a lot

  • @myusername3689
    @myusername3689 2 роки тому

    Lift induced drag simplified: Downwash tilts lift vector slightly backwards, lift vector backwards means that the lift is not only pulling upwards at the aircraft, but also backwards, which mimics drag. Downwash is caused by the shape of the airfoil and also caused or amplified by vortices.

    • @dougball328
      @dougball328 Рік тому

      Downwash is not caused by the shape of the airfoil. It is the result of the circulation generated to produce lift. L=rho* V*gamma) where gamma is the circulation strength.

  • @carlosrodriguezronchel2031
    @carlosrodriguezronchel2031 Місяць тому

    This is brilliant! Congrats

  • @ingGS
    @ingGS 4 роки тому +1

    You are the best, you are the absolute best.

  • @jeemain9071
    @jeemain9071 4 роки тому

    No wonder why your video takes large time🤟🤟🤟🤟🤟

  • @crustybasterd1352
    @crustybasterd1352 3 роки тому

    Amazing channel, so glad I found it!

  • @QMCESAR
    @QMCESAR 3 роки тому

    Excellent video. Thanks for the very well explained video.

  • @uchia_yt8177
    @uchia_yt8177 Рік тому

    What a legend man❤️
    Helped a lot

  • @Peter-nighthawk
    @Peter-nighthawk Рік тому

    Thank you for the perfect job. Very well done!

  • @giovanniluddeni663
    @giovanniluddeni663 4 роки тому +1

    From what I've read, shark-like roughness won't be advantageous for planes but mostly for boats and similar bluffer bodies, since the most of the gain comes from moving the curve Cd/Re in a way that makes the Cd to fall in the critical pit (the lower pit in the plot). Planes are obviously surrounded by a fully turbulent flow, so this would not be possible. It's the reason why golf balls have bumps while smaller/bigger balls are flat. Very nice video!

    • @dougball328
      @dougball328 Рік тому

      Riblets are another means of reducing turbulent friction drag. Riblets are microridges running in the direction of the local flow. The flow tends to sit on top of the ridges - the drag is reduced because the flow is not 'touching' the full wetted surface of the wehicle. As the video suggested, implementation is the issue - as well as how to maintain the integrity of the surface.

  • @DigitalvideotoolsOrg
    @DigitalvideotoolsOrg 3 роки тому +1

    I am an aeronautical engineer. This video is spot on.

  • @shafaqparveen5070
    @shafaqparveen5070 3 роки тому

    Really and informative video with clear concepts. Thanks

  • @elpaso4765
    @elpaso4765 3 роки тому

    Your channel is wonderful!

  • @sudhidm3122
    @sudhidm3122 4 роки тому

    Most beautiful explanation on aerodynamics ever...👍🙏👌👌👌👌👌👌

  • @dougball328
    @dougball328 Рік тому

    The Efficient Engineer alluded to asymmetric vortex shedding leading to instability but never went any further (at least not in this video) A good example of this is the baseball knuckleball. A pitcher throw the ball trying to not spin it. By not spinning, the laces do not trip the boundary layer. The flow separates somewhere on the ball and this sheds a vortex and causes a force imbalance. This shedding moves around the ball, the forces change and push in different directions, and thus the ball's flight path is erratic. The curve ball is just the opposite. The pitcher spins the ball rapidly so that the flow goes around one side more than the other. This produces a 'lift' (or sideforce) thus causing the ball to curve.

  • @NPRBEST
    @NPRBEST 4 роки тому

    You are revolutionizing education!! Keep it up! Thanks a lot

  • @excalibur2889
    @excalibur2889 4 роки тому

    Great work man .....
    It's my humble request plz plz upload videos more often

  • @ariabakhtiar7998
    @ariabakhtiar7998 4 роки тому

    You will go far. Thank you for helping me with static.

  • @vaibhavbarde2114
    @vaibhavbarde2114 4 роки тому

    It was awesome.
    Very nice 👌
    Looking up to you for more Aerospace content.

  • @faizansultan8067
    @faizansultan8067 4 роки тому

    finally
    love you man
    please upload more videos on structural anlysis please

  • @mlfb01ag
    @mlfb01ag 3 роки тому +1

    7:18 Shark skin
    8:05 Shape of body and angle of attack, plate
    9:08 Friction, pressure, and total drag on graph
    11:45 Stoke's Law

  • @athulj9614
    @athulj9614 4 роки тому

    Keep doing this great work.

  • @christianh8636
    @christianh8636 9 місяців тому

    Very good explanation, thanks!

  • @wathsalahiruni646
    @wathsalahiruni646 7 місяців тому

    you explain these brilliant way❤ there are more complicated to understand lecture note😢

  • @samarthkatarey6239
    @samarthkatarey6239 4 роки тому

    Thanks man such a wonderful video

  • @andremunno2045
    @andremunno2045 3 роки тому

    your videos are astounding

  • @gaeb-hd4lf
    @gaeb-hd4lf 4 роки тому +1

    damn these animations are top notch

  • @russellchattaraj1217
    @russellchattaraj1217 4 роки тому

    Oh gosh how is so conceptually clear !

  • @sachinsahani6117
    @sachinsahani6117 Рік тому

    Amazing helped a lot to understand from scrach

  • @michaelbabatunde3915
    @michaelbabatunde3915 4 роки тому

    My best lecture ever
    Many thanks sir

  • @dresdenkiller
    @dresdenkiller 3 роки тому

    This video was anything but a drag!

  • @ChrisZoomER
    @ChrisZoomER 4 роки тому

    Absolutely brilliant explanation! 💯👍

  • @giovannigiorgio0
    @giovannigiorgio0 4 роки тому

    ohh you are back, nice to see you again ^_^

  • @gustavocortico1681
    @gustavocortico1681 3 роки тому

    My friend, I hope you are making money, because you deserve it.

  • @brunomartel4639
    @brunomartel4639 4 роки тому +1

    This is art

  • @Obi1-KenBone-Me
    @Obi1-KenBone-Me 2 роки тому

    this 16 minutes video was more helpfull then the 2 hours i spent trying to understand the drag chapter from the principles of flight manual

  • @foysalahmmed8981
    @foysalahmmed8981 Рік тому

    Love this channel

  • @carmelpule8493
    @carmelpule8493 4 місяці тому

    If the wing is moving forwards in stationary air space, the drag is the force required to ACCELERATE forwards mass of air near the wing..
    If the air is moving in a wind tunnel with the wing stationary, the drag is the force required to DECELERATE the mass of air near the wing.
    ( parallel to the wing flight path)
    LIFT is created by ACCELERATING the air mass particles downwards ( orthogonal to the wing flight path) using compression effects below the wing and a partial vacuum effect above the wing.