[Discrete Mathematics] Subgraphs, Complements, and Complete Graphs

Поділитися
Вставка
  • Опубліковано 1 січ 2025

КОМЕНТАРІ • 32

  • @samirpatelgx
    @samirpatelgx 6 років тому +43

    At 4:35 - I think you meant to say lets remove the vertex C, and not "lets remove the edge C".

  • @TheJoy97
    @TheJoy97 6 років тому +28

    Thank you sir.. You can explain better than my College lecturer.. Very Helpful !!

    • @proggenius2024
      @proggenius2024 Рік тому

      That is to be expected! Nothing surprising considering most of these days lecturers in college.😀

  • @brittainthompson6449
    @brittainthompson6449 3 роки тому +4

    These are better than the videos my professor posts. Thank you so much

  • @jennifermichel3653
    @jennifermichel3653 6 років тому +5

    Thank you for posting these videos. They are helping me tremendously.

  • @naruhitoabiku9451
    @naruhitoabiku9451 Рік тому +2

    You are a legend

  • @atayavuzz
    @atayavuzz 6 років тому +2

    at 12:28 why are we looping it from the bottom but not looping it from the top just like the K4

    • @atayavuzz
      @atayavuzz 6 років тому +5

      It doesn't matter right?

  • @pcgamermofo
    @pcgamermofo 6 років тому +22

    It's a bunch of jargon!

  • @sperera5916
    @sperera5916 8 років тому +2

    10:00 how does K1 have an edge? K1 is an isolated vertex where the degree is 0 which means no edge. But you said differently. Thanks

  • @the.polymath
    @the.polymath 4 роки тому

    20:16 with the (n-3)! part was completely lost on me. Could anyone shine some light on that part? I totally didn't follow how all that is the same as (n-1) choose 2.

  • @nahrafe
    @nahrafe 4 роки тому +1

    Wait, complete graph without loop(s) but they're definitely graph with all the vertices connected, so the number of edge is combination(v,2). But why you draw that K4 only with 5 edges, not 6?

  • @omerfatihdokumac9960
    @omerfatihdokumac9960 6 років тому +59

    Damn these lectures are so ''edgy''.

  • @hchen31
    @hchen31 2 роки тому

    20:34 I don't understand the (n-3)! part...can anyone help? Thank you!

    • @_mishi
      @_mishi Рік тому +2

      I dont know if you still want this, but he basically made the connection with (n-1) choose 2 which would be the equation that he wrote. (n-1) choose 2 is (n-1)!/(n-3)!*2 which is same as (n-1)(n-2)(n-3)!/(n-3)!*2. cancelling out the (n-3)! and you get what he was going with before he made the comparison to (n-1) choose 2.

  • @nathanielenriqueeulin4413
    @nathanielenriqueeulin4413 2 роки тому

    21:46

  • @한가을-n5v
    @한가을-n5v 2 роки тому

    22:00

  • @khadijahflowers5566
    @khadijahflowers5566 7 років тому +1

    Question about compliments
    Can I say that taking the compliment of a graph is just getting rid of the edges that are there, but adding the ones that aren't? You probably said it, but I think I got confused... Sorry

    • @Trevtutor
      @Trevtutor  7 років тому +2

      Yeah, that would be one way of looking at it.

    • @khadijahflowers5566
      @khadijahflowers5566 7 років тому +1

      TheTrevTutor i just saw your video about complete graphs and you took the compliment of a complete bipartite graph and it cleared things up. Thank you!

  • @alejandraescalante3506
    @alejandraescalante3506 5 років тому

    How many sub-graph does Kn? 🤔 Please

  • @ioannismarkoulakis4978
    @ioannismarkoulakis4978 7 років тому

    15:21 because we have 4 vertices and we chose 2??????

    • @SaurabhGupta-xv4fk
      @SaurabhGupta-xv4fk 6 років тому +1

      because an edge is formed between 2 vertices so total number of edges is 4 choose 2

    • @JP-xm3qf
      @JP-xm3qf 5 років тому

      But this is a complete graph, so all the vertex are connected directly, so the vertices are connected with 3 edges

    • @the.polymath
      @the.polymath 4 роки тому

      @@JP-xm3qf But any edge must connect TWO vertices so even if there are three edges each of them must connect TWO vertices. So (4 choose 2) is basically "how many pairs of vertices one can choose" since each pair will make ONE edge.

  • @oskarjung6738
    @oskarjung6738 4 роки тому

    6:47 Wait that's illegal!!

  • @SendiSiradj
    @SendiSiradj 5 років тому

    in 19:15 why the edge of {v} is (n-1). I do not understand

    • @SuvankarSur
      @SuvankarSur 4 роки тому +2

      Because in a complete graph, any vertex is connected to all other vertices. So it has n-1 edges incident on it. Thus if you remove a vertex, you have to remove n-1 edges as well.

  • @jackjiang7535
    @jackjiang7535 5 років тому

    20:16 ohhhh magic

    • @the.polymath
      @the.polymath 4 роки тому

      I've completely missed what he did there. Anyone able to help? Like with the (n-3)! bit...I'm totally lost...

  • @bardzogroznyjezyk2655
    @bardzogroznyjezyk2655 5 років тому +1

    Living on the edge be like

  • @kuzaytepecagri
    @kuzaytepecagri Рік тому

    eyvvah 205